.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_beginner_audio_preprocessing_tutorial.py: Audio manipulation with torchaudio ================================== ``torchaudio`` provides powerful audio I/O functions, preprocessing transforms and dataset. In this tutorial, we will look into how to prepare audio data and extract features that can be fed to NN models. .. code-block:: default # When running this tutorial in Google Colab, install the required packages # with the following. # !pip install torchaudio librosa boto3 import torch import torchaudio import torchaudio.functional as F import torchaudio.transforms as T print(torch.__version__) print(torchaudio.__version__) Preparing data and utility functions (skip this section) -------------------------------------------------------- .. code-block:: default #@title Prepare data and utility functions. {display-mode: "form"} #@markdown #@markdown You do not need to look into this cell. #@markdown Just execute once and you are good to go. #@markdown #@markdown In this tutorial, we will use a speech data from [VOiCES dataset](https://iqtlabs.github.io/voices/), which is licensed under Creative Commos BY 4.0. #------------------------------------------------------------------------------- # Preparation of data and helper functions. #------------------------------------------------------------------------------- import io import os import math import tarfile import multiprocessing import scipy import librosa import boto3 from botocore import UNSIGNED from botocore.config import Config import requests import matplotlib import matplotlib.pyplot as plt from IPython.display import Audio, display [width, height] = matplotlib.rcParams['figure.figsize'] if width < 10: matplotlib.rcParams['figure.figsize'] = [width * 2.5, height] _SAMPLE_DIR = "_sample_data" SAMPLE_WAV_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/steam-train-whistle-daniel_simon.wav" SAMPLE_WAV_PATH = os.path.join(_SAMPLE_DIR, "steam.wav") SAMPLE_WAV_SPEECH_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav" SAMPLE_WAV_SPEECH_PATH = os.path.join(_SAMPLE_DIR, "speech.wav") SAMPLE_RIR_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/distant-16k/room-response/rm1/impulse/Lab41-SRI-VOiCES-rm1-impulse-mc01-stu-clo.wav" SAMPLE_RIR_PATH = os.path.join(_SAMPLE_DIR, "rir.wav") SAMPLE_NOISE_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/distant-16k/distractors/rm1/babb/Lab41-SRI-VOiCES-rm1-babb-mc01-stu-clo.wav" SAMPLE_NOISE_PATH = os.path.join(_SAMPLE_DIR, "bg.wav") SAMPLE_MP3_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/steam-train-whistle-daniel_simon.mp3" SAMPLE_MP3_PATH = os.path.join(_SAMPLE_DIR, "steam.mp3") SAMPLE_GSM_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/steam-train-whistle-daniel_simon.gsm" SAMPLE_GSM_PATH = os.path.join(_SAMPLE_DIR, "steam.gsm") SAMPLE_TAR_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit.tar.gz" SAMPLE_TAR_PATH = os.path.join(_SAMPLE_DIR, "sample.tar.gz") SAMPLE_TAR_ITEM = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav" S3_BUCKET = "pytorch-tutorial-assets" S3_KEY = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav" YESNO_DATASET_PATH = os.path.join(_SAMPLE_DIR, "yes_no") os.makedirs(YESNO_DATASET_PATH, exist_ok=True) os.makedirs(_SAMPLE_DIR, exist_ok=True) def _fetch_data(): uri = [ (SAMPLE_WAV_URL, SAMPLE_WAV_PATH), (SAMPLE_WAV_SPEECH_URL, SAMPLE_WAV_SPEECH_PATH), (SAMPLE_RIR_URL, SAMPLE_RIR_PATH), (SAMPLE_NOISE_URL, SAMPLE_NOISE_PATH), (SAMPLE_MP3_URL, SAMPLE_MP3_PATH), (SAMPLE_GSM_URL, SAMPLE_GSM_PATH), (SAMPLE_TAR_URL, SAMPLE_TAR_PATH), ] for url, path in uri: with open(path, 'wb') as file_: file_.write(requests.get(url).content) _fetch_data() def _download_yesno(): if os.path.exists(os.path.join(YESNO_DATASET_PATH, "waves_yesno.tar.gz")): return torchaudio.datasets.YESNO(root=YESNO_DATASET_PATH, download=True) YESNO_DOWNLOAD_PROCESS = multiprocessing.Process(target=_download_yesno) YESNO_DOWNLOAD_PROCESS.start() def _get_sample(path, resample=None): effects = [ ["remix", "1"] ] if resample: effects.append(["rate", f'{resample}']) return torchaudio.sox_effects.apply_effects_file(path, effects=effects) def get_speech_sample(*, resample=None): return _get_sample(SAMPLE_WAV_SPEECH_PATH, resample=resample) def get_sample(*, resample=None): return _get_sample(SAMPLE_WAV_PATH, resample=resample) def get_rir_sample(*, resample=None, processed=False): rir_raw, sample_rate = _get_sample(SAMPLE_RIR_PATH, resample=resample) if not processed: return rir_raw, sample_rate rir = rir_raw[:, int(sample_rate*1.01):int(sample_rate*1.3)] rir = rir / torch.norm(rir, p=2) rir = torch.flip(rir, [1]) return rir, sample_rate def get_noise_sample(*, resample=None): return _get_sample(SAMPLE_NOISE_PATH, resample=resample) def print_metadata(metadata, src=None): if src: print("-" * 10) print("Source:", src) print("-" * 10) print(" - sample_rate:", metadata.sample_rate) print(" - num_channels:", metadata.num_channels) print(" - num_frames:", metadata.num_frames) print(" - bits_per_sample:", metadata.bits_per_sample) print(" - encoding:", metadata.encoding) print() def print_stats(waveform, sample_rate=None, src=None): if src: print("-" * 10) print("Source:", src) print("-" * 10) if sample_rate: print("Sample Rate:", sample_rate) print("Shape:", tuple(waveform.shape)) print("Dtype:", waveform.dtype) print(f" - Max: {waveform.max().item():6.3f}") print(f" - Min: {waveform.min().item():6.3f}") print(f" - Mean: {waveform.mean().item():6.3f}") print(f" - Std Dev: {waveform.std().item():6.3f}") print() print(waveform) print() def plot_waveform(waveform, sample_rate, title="Waveform", xlim=None, ylim=None): waveform = waveform.numpy() num_channels, num_frames = waveform.shape time_axis = torch.arange(0, num_frames) / sample_rate figure, axes = plt.subplots(num_channels, 1) if num_channels == 1: axes = [axes] for c in range(num_channels): axes[c].plot(time_axis, waveform[c], linewidth=1) axes[c].grid(True) if num_channels > 1: axes[c].set_ylabel(f'Channel {c+1}') if xlim: axes[c].set_xlim(xlim) if ylim: axes[c].set_ylim(ylim) figure.suptitle(title) plt.show(block=False) def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None): waveform = waveform.numpy() num_channels, num_frames = waveform.shape time_axis = torch.arange(0, num_frames) / sample_rate figure, axes = plt.subplots(num_channels, 1) if num_channels == 1: axes = [axes] for c in range(num_channels): axes[c].specgram(waveform[c], Fs=sample_rate) if num_channels > 1: axes[c].set_ylabel(f'Channel {c+1}') if xlim: axes[c].set_xlim(xlim) figure.suptitle(title) plt.show(block=False) def play_audio(waveform, sample_rate): waveform = waveform.numpy() num_channels, num_frames = waveform.shape if num_channels == 1: display(Audio(waveform[0], rate=sample_rate)) elif num_channels == 2: display(Audio((waveform[0], waveform[1]), rate=sample_rate)) else: raise ValueError("Waveform with more than 2 channels are not supported.") def inspect_file(path): print("-" * 10) print("Source:", path) print("-" * 10) print(f" - File size: {os.path.getsize(path)} bytes") print_metadata(torchaudio.info(path)) def plot_spectrogram(spec, title=None, ylabel='freq_bin', aspect='auto', xmax=None): fig, axs = plt.subplots(1, 1) axs.set_title(title or 'Spectrogram (db)') axs.set_ylabel(ylabel) axs.set_xlabel('frame') im = axs.imshow(librosa.power_to_db(spec), origin='lower', aspect=aspect) if xmax: axs.set_xlim((0, xmax)) fig.colorbar(im, ax=axs) plt.show(block=False) def plot_mel_fbank(fbank, title=None): fig, axs = plt.subplots(1, 1) axs.set_title(title or 'Filter bank') axs.imshow(fbank, aspect='auto') axs.set_ylabel('frequency bin') axs.set_xlabel('mel bin') plt.show(block=False) def get_spectrogram( n_fft = 400, win_len = None, hop_len = None, power = 2.0, ): waveform, _ = get_speech_sample() spectrogram = T.Spectrogram( n_fft=n_fft, win_length=win_len, hop_length=hop_len, center=True, pad_mode="reflect", power=power, ) return spectrogram(waveform) def plot_pitch(waveform, sample_rate, pitch): figure, axis = plt.subplots(1, 1) axis.set_title("Pitch Feature") axis.grid(True) end_time = waveform.shape[1] / sample_rate time_axis = torch.linspace(0, end_time, waveform.shape[1]) axis.plot(time_axis, waveform[0], linewidth=1, color='gray', alpha=0.3) axis2 = axis.twinx() time_axis = torch.linspace(0, end_time, pitch.shape[1]) ln2 = axis2.plot( time_axis, pitch[0], linewidth=2, label='Pitch', color='green') axis2.legend(loc=0) plt.show(block=False) def plot_kaldi_pitch(waveform, sample_rate, pitch, nfcc): figure, axis = plt.subplots(1, 1) axis.set_title("Kaldi Pitch Feature") axis.grid(True) end_time = waveform.shape[1] / sample_rate time_axis = torch.linspace(0, end_time, waveform.shape[1]) axis.plot(time_axis, waveform[0], linewidth=1, color='gray', alpha=0.3) time_axis = torch.linspace(0, end_time, pitch.shape[1]) ln1 = axis.plot(time_axis, pitch[0], linewidth=2, label='Pitch', color='green') axis.set_ylim((-1.3, 1.3)) axis2 = axis.twinx() time_axis = torch.linspace(0, end_time, nfcc.shape[1]) ln2 = axis2.plot( time_axis, nfcc[0], linewidth=2, label='NFCC', color='blue', linestyle='--') lns = ln1 + ln2 labels = [l.get_label() for l in lns] axis.legend(lns, labels, loc=0) plt.show(block=False) Audio I/O ========= torchaudio integrates ``libsox`` and provides a rich set of audio I/O. Quering audio metadata ---------------------- ``torchaudio.info`` function fetches metadata of audio. You can provide a path-like object or file-like object. .. code-block:: default metadata = torchaudio.info(SAMPLE_WAV_PATH) print_metadata(metadata, src=SAMPLE_WAV_PATH) Where - ``sample_rate`` is the sampling rate of the audio - ``num_channels`` is the number of channels - ``num_frames`` is the number of frames per channel - ``bits_per_sample`` is bit depth - ``encoding`` is the sample coding format The values ``encoding`` can take are one of the following - ``"PCM_S"``: Signed integer linear PCM - ``"PCM_U"``: Unsigned integer linear PCM - ``"PCM_F"``: Floating point linear PCM - ``"FLAC"``: Flac, `Free Lossless Audio Codec `__ - ``"ULAW"``: Mu-law, [`wikipedia `__] - ``"ALAW"``: A-law [`wikipedia `__] - ``"MP3"`` : MP3, MPEG-1 Audio Layer III - ``"VORBIS"``: OGG Vorbis [`xiph.org `__] - ``"AMR_NB"``: Adaptive Multi-Rate [`wikipedia `__] - ``"AMR_WB"``: Adaptive Multi-Rate Wideband [`wikipedia `__] - ``"OPUS"``: Opus [`opus-codec.org `__] - ``"GSM"``: GSM-FR [`wikipedia `__] - ``"UNKNOWN"`` None of avobe **Note** - ``bits_per_sample`` can be ``0`` for formats with compression and/or variable bit rate. (such as mp3) - ``num_frames`` can be ``0`` for GSM-FR format. .. code-block:: default metadata = torchaudio.info(SAMPLE_MP3_PATH) print_metadata(metadata, src=SAMPLE_MP3_PATH) metadata = torchaudio.info(SAMPLE_GSM_PATH) print_metadata(metadata, src=SAMPLE_GSM_PATH) Querying file-like object ~~~~~~~~~~~~~~~~~~~~~~~~~ ``info`` function works on file-like object as well. .. code-block:: default with requests.get(SAMPLE_WAV_URL, stream=True) as response: metadata = torchaudio.info(response.raw) print_metadata(metadata, src=SAMPLE_WAV_URL) **Note** When passing file-like object, ``info`` function does not read all the data, instead it only reads the beginning portion of data. Therefore, depending on the audio format, it cannot get the correct metadata, including the format itself. The following example illustrates this. - Use ``format`` argument to tell what audio format it is. - The returned metadata has ``num_frames = 0`` .. code-block:: default with requests.get(SAMPLE_MP3_URL, stream=True) as response: metadata = torchaudio.info(response.raw, format="mp3") print(f"Fetched {response.raw.tell()} bytes.") print_metadata(metadata, src=SAMPLE_MP3_URL) Loading audio data into Tensor ------------------------------ To load audio data, you can use ``torchaudio.load``. This function accepts path-like object and file-like object. The returned value is a tuple of waveform (``Tensor``) and sample rate (``int``). By default, the resulting tensor object has ``dtype=torch.float32`` and its value range is normalized within ``[-1.0, 1.0]``. For the list of supported format, please refer to `the torchaudio documentation `__. .. code-block:: default waveform, sample_rate = torchaudio.load(SAMPLE_WAV_SPEECH_PATH) print_stats(waveform, sample_rate=sample_rate) plot_waveform(waveform, sample_rate) plot_specgram(waveform, sample_rate) play_audio(waveform, sample_rate) Loading from file-like object ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ``torchaudio``\ ’s I/O functions now support file-like object. This allows to fetch audio data and decode at the same time from the location other than local file system. The following examples illustrates this. .. code-block:: default # Load audio data as HTTP request with requests.get(SAMPLE_WAV_SPEECH_URL, stream=True) as response: waveform, sample_rate = torchaudio.load(response.raw) plot_specgram(waveform, sample_rate, title="HTTP datasource") # Load audio from tar file with tarfile.open(SAMPLE_TAR_PATH, mode='r') as tarfile_: fileobj = tarfile_.extractfile(SAMPLE_TAR_ITEM) waveform, sample_rate = torchaudio.load(fileobj) plot_specgram(waveform, sample_rate, title="TAR file") # Load audio from S3 client = boto3.client('s3', config=Config(signature_version=UNSIGNED)) response = client.get_object(Bucket=S3_BUCKET, Key=S3_KEY) waveform, sample_rate = torchaudio.load(response['Body']) plot_specgram(waveform, sample_rate, title="From S3") Tips on slicing ~~~~~~~~~~~~~~~ Providing ``num_frames`` and ``frame_offset`` arguments will slice the resulting Tensor object while decoding. The same result can be achieved using the regular Tensor slicing, (i.e. ``waveform[:, frame_offset:frame_offset+num_frames]``) however, providing ``num_frames`` and ``frame_offset`` arguments is more efficient. This is because the function will stop data acquisition and decoding once it finishes decoding the requested frames. This is advantageous when the audio data are transfered via network as the data transfer will stop as soon as the necessary amount of data is fetched. The following example illustrates this; .. code-block:: default # Illustration of two different decoding methods. # The first one will fetch all the data and decode them, while # the second one will stop fetching data once it completes decoding. # The resulting waveforms are identical. frame_offset, num_frames = 16000, 16000 # Fetch and decode the 1 - 2 seconds print("Fetching all the data...") with requests.get(SAMPLE_WAV_SPEECH_URL, stream=True) as response: waveform1, sample_rate1 = torchaudio.load(response.raw) waveform1 = waveform1[:, frame_offset:frame_offset+num_frames] print(f" - Fetched {response.raw.tell()} bytes") print("Fetching until the requested frames are available...") with requests.get(SAMPLE_WAV_SPEECH_URL, stream=True) as response: waveform2, sample_rate2 = torchaudio.load( response.raw, frame_offset=frame_offset, num_frames=num_frames) print(f" - Fetched {response.raw.tell()} bytes") print("Checking the resulting waveform ... ", end="") assert (waveform1 == waveform2).all() print("matched!") Saving audio to file -------------------- To save audio data in the formats intepretable by common applications, you can use ``torchaudio.save``. This function accepts path-like object and file-like object. When passing file-like object, you also need to provide ``format`` argument so that the function knows which format it should be using. In case of path-like object, the function will detemine the format based on the extension. If you are saving to a file without extension, you need to provide ``format`` argument. When saving as WAV format, the default encoding for ``float32`` Tensor is 32-bit floating-point PCM. You can provide ``encoding`` and ``bits_per_sample`` argument to change this. For example, to save data in 16 bit signed integer PCM, you can do the following. **Note** Saving data in encodings with lower bit depth reduces the resulting file size but loses precision. .. code-block:: default waveform, sample_rate = get_sample() print_stats(waveform, sample_rate=sample_rate) # Save without any encoding option. # The function will pick up the encoding which # the provided data fit path = "save_example_default.wav" torchaudio.save(path, waveform, sample_rate) inspect_file(path) # Save as 16-bit signed integer Linear PCM # The resulting file occupies half the storage but loses precision path = "save_example_PCM_S16.wav" torchaudio.save( path, waveform, sample_rate, encoding="PCM_S", bits_per_sample=16) inspect_file(path) ``torchaudio.save`` can also handle other formats. To name a few; .. code-block:: default waveform, sample_rate = get_sample() formats = [ "mp3", "flac", "vorbis", "sph", "amb", "amr-nb", "gsm", ] for format in formats: path = f"save_example.{format}" torchaudio.save(path, waveform, sample_rate, format=format) inspect_file(path) Saving to file-like object ~~~~~~~~~~~~~~~~~~~~~~~~~~ Similar to the other I/O functions, you can save audio into file-like object. When saving to file-like object, ``format`` argument is required. .. code-block:: default waveform, sample_rate = get_sample() # Saving to Bytes buffer buffer_ = io.BytesIO() torchaudio.save(buffer_, waveform, sample_rate, format="wav") buffer_.seek(0) print(buffer_.read(16)) Data Augmentation ================= ``torchaudio`` provides a variety of ways to augment audio data. Applying effects and filtering ------------------------------ ``torchaudio.sox_effects`` module provides ways to apply filiters like ``sox`` command on Tensor objects and file-object audio sources directly. There are two functions for this; - ``torchaudio.sox_effects.apply_effects_tensor`` for applying effects on Tensor - ``torchaudio.sox_effects.apply_effects_file`` for applying effects on other audio source Both function takes effects in the form of ``List[List[str]]``. This mostly corresponds to how ``sox`` command works, but one caveat is that ``sox`` command adds some effects automatically, but torchaudio’s implementation does not do that. For the list of available effects, please refer to `the sox documentation `__. **Tip** If you need to load and resample your audio data on-the-fly, then you can use ``torchaudio.sox_effects.apply_effects_file`` with ``"rate"`` effect. **Note** ``apply_effects_file`` accepts file-like object or path-like object. Similar to ``torchaudio.load``, when the audio format cannot be detected from either file extension or header, you can provide ``format`` argument to tell what format the audio source is. **Note** This process is not differentiable. .. code-block:: default # Load the data waveform1, sample_rate1 = get_sample(resample=16000) # Define effects effects = [ ["lowpass", "-1", "300"], # apply single-pole lowpass filter ["speed", "0.8"], # reduce the speed # This only changes sample rate, so it is necessary to # add `rate` effect with original sample rate after this. ["rate", f"{sample_rate1}"], ["reverb", "-w"], # Reverbration gives some dramatic feeling ] # Apply effects waveform2, sample_rate2 = torchaudio.sox_effects.apply_effects_tensor( waveform1, sample_rate1, effects) plot_waveform(waveform1, sample_rate1, title="Original", xlim=(-.1, 3.2)) plot_waveform(waveform2, sample_rate2, title="Effects Applied", xlim=(-.1, 3.2)) print_stats(waveform1, sample_rate=sample_rate1, src="Original") print_stats(waveform2, sample_rate=sample_rate2, src="Effects Applied") Note that the number of frames and number of channels are different from the original after the effects. Let’s listen to the audio. Doesn’t it sound more dramatic? .. code-block:: default plot_specgram(waveform1, sample_rate1, title="Original", xlim=(0, 3.04)) play_audio(waveform1, sample_rate1) plot_specgram(waveform2, sample_rate2, title="Effects Applied", xlim=(0, 3.04)) play_audio(waveform2, sample_rate2) Simulating room reverbration ---------------------------- `Convolution reverb `__ is a technique used to make a clean audio data sound like in a different environment. Using Room Impulse Response (RIR), we can make a clean speech sound like uttered in a conference room. For this process, we need RIR data. The following data are from VOiCES dataset, but you can record one by your self. Just turn on microphone and clap you hands. .. code-block:: default sample_rate = 8000 rir_raw, _ = get_rir_sample(resample=sample_rate) plot_waveform(rir_raw, sample_rate, title="Room Impulse Response (raw)", ylim=None) plot_specgram(rir_raw, sample_rate, title="Room Impulse Response (raw)") play_audio(rir_raw, sample_rate) First, we need to clean up the RIR. We extract the main impulse, normalize the signal power, then flip the time axis. .. code-block:: default rir = rir_raw[:, int(sample_rate*1.01):int(sample_rate*1.3)] rir = rir / torch.norm(rir, p=2) rir = torch.flip(rir, [1]) print_stats(rir) plot_waveform(rir, sample_rate, title="Room Impulse Response", ylim=None) Then we convolve the speech signal with the RIR filter. .. code-block:: default speech, _ = get_speech_sample(resample=sample_rate) speech_ = torch.nn.functional.pad(speech, (rir.shape[1]-1, 0)) augmented = torch.nn.functional.conv1d(speech_[None, ...], rir[None, ...])[0] plot_waveform(speech, sample_rate, title="Original", ylim=None) plot_waveform(augmented, sample_rate, title="RIR Applied", ylim=None) plot_specgram(speech, sample_rate, title="Original") play_audio(speech, sample_rate) plot_specgram(augmented, sample_rate, title="RIR Applied") play_audio(augmented, sample_rate) Adding background noise ----------------------- To add background noise to audio data, you can simply add audio Tensor and noise Tensor. A commonly way to adjust the intensity of noise is to change Signal-to-Noise Ratio (SNR). [`wikipedia `__] .. math:: \mathrm{SNR} = \frac{P_\mathrm{signal}}{P_\mathrm{noise}} .. math:: {\mathrm {SNR_{{dB}}}}=10\log _{{10}}\left({\mathrm {SNR}}\right) .. code-block:: default sample_rate = 8000 speech, _ = get_speech_sample(resample=sample_rate) noise, _ = get_noise_sample(resample=sample_rate) noise = noise[:, :speech.shape[1]] plot_waveform(noise, sample_rate, title="Background noise") plot_specgram(noise, sample_rate, title="Background noise") play_audio(noise, sample_rate) speech_power = speech.norm(p=2) noise_power = noise.norm(p=2) for snr_db in [20, 10, 3]: snr = math.exp(snr_db / 10) scale = snr * noise_power / speech_power noisy_speech = (scale * speech + noise) / 2 plot_waveform(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]") plot_specgram(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]") play_audio(noisy_speech, sample_rate) Applying codec to Tensor object ------------------------------- ``torchaudio.functional.apply_codec`` can apply codecs to Tensor object. **Note** This process is not differentiable. .. code-block:: default waveform, sample_rate = get_speech_sample(resample=8000) plot_specgram(waveform, sample_rate, title="Original") play_audio(waveform, sample_rate) configs = [ ({"format": "wav", "encoding": 'ULAW', "bits_per_sample": 8}, "8 bit mu-law"), ({"format": "gsm"}, "GSM-FR"), ({"format": "mp3", "compression": -9}, "MP3"), ({"format": "vorbis", "compression": -1}, "Vorbis"), ] for param, title in configs: augmented = F.apply_codec(waveform, sample_rate, **param) plot_specgram(augmented, sample_rate, title=title) play_audio(augmented, sample_rate) Simulating a phone recoding --------------------------- Combining the previous techniques, we can simulate audio that sounds like a person talking over a phone in a echoey room with people talking in the background. .. code-block:: default sample_rate = 16000 speech, _ = get_speech_sample(resample=sample_rate) plot_specgram(speech, sample_rate, title="Original") play_audio(speech, sample_rate) # Apply RIR rir, _ = get_rir_sample(resample=sample_rate, processed=True) speech_ = torch.nn.functional.pad(speech, (rir.shape[1]-1, 0)) speech = torch.nn.functional.conv1d(speech_[None, ...], rir[None, ...])[0] plot_specgram(speech, sample_rate, title="RIR Applied") play_audio(speech, sample_rate) # Add background noise # Because the noise is recorded in the actual environment, we consider that # the noise contains the acoustic feature of the environment. Therefore, we add # the noise after RIR application. noise, _ = get_noise_sample(resample=sample_rate) noise = noise[:, :speech.shape[1]] snr_db = 8 scale = math.exp(snr_db / 10) * noise.norm(p=2) / speech.norm(p=2) speech = (scale * speech + noise) / 2 plot_specgram(speech, sample_rate, title="BG noise added") play_audio(speech, sample_rate) # Apply filtering and change sample rate speech, sample_rate = torchaudio.sox_effects.apply_effects_tensor( speech, sample_rate, effects=[ ["lowpass", "4000"], ["compand", "0.02,0.05", "-60,-60,-30,-10,-20,-8,-5,-8,-2,-8", "-8", "-7", "0.05"], ["rate", "8000"], ], ) plot_specgram(speech, sample_rate, title="Filtered") play_audio(speech, sample_rate) # Apply telephony codec speech = F.apply_codec(speech, sample_rate, format="gsm") plot_specgram(speech, sample_rate, title="GSM Codec Applied") play_audio(speech, sample_rate) Feature Extractions =================== ``torchaudio`` implements feature extractions commonly used in audio domain. They are available in ``torchaudio.functional`` and ``torchaudio.transforms``. ``functional`` module implements features as a stand alone functions. They are stateless. ``transforms`` module implements features in object-oriented manner, using implementations from ``functional`` and ``torch.nn.Module``. Because all the transforms are subclass of ``torch.nn.Module``, they can be serialized using TorchScript. For the complete list of available features, please refer to the documentation. In this tutorial, we will look into conversion between time domain and frequency domain (``Spectrogram``, ``GriffinLim``, ``MelSpectrogram``) and augmentation technique called SpecAugment. Spectrogram ----------- To get the frequency representation of audio signal, you can use ``Spectrogram`` transform. .. code-block:: default waveform, sample_rate = get_speech_sample() n_fft = 1024 win_length = None hop_length = 512 # define transformation spectrogram = T.Spectrogram( n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True, pad_mode="reflect", power=2.0, ) # Perform transformation spec = spectrogram(waveform) print_stats(spec) plot_spectrogram(spec[0], title='torchaudio') GriffinLim ---------- To recover a waveform from spectrogram, you can use ``GriffinLim``. .. code-block:: default torch.random.manual_seed(0) waveform, sample_rate = get_speech_sample() plot_waveform(waveform, sample_rate, title="Original") play_audio(waveform, sample_rate) n_fft = 1024 win_length = None hop_length = 512 spec = T.Spectrogram( n_fft=n_fft, win_length=win_length, hop_length=hop_length, )(waveform) griffin_lim = T.GriffinLim( n_fft=n_fft, win_length=win_length, hop_length=hop_length, ) waveform = griffin_lim(spec) plot_waveform(waveform, sample_rate, title="Reconstructed") play_audio(waveform, sample_rate) Mel Filter Bank --------------- ``torchaudio.functional.create_fb_matrix`` can generate the filter bank to convert frequency bins to Mel-scale bins. Since this function does not require input audio/features, there is no equivalent transform in ``torchaudio.transforms``. .. code-block:: default n_fft = 256 n_mels = 64 sample_rate = 6000 mel_filters = F.create_fb_matrix( int(n_fft // 2 + 1), n_mels=n_mels, f_min=0., f_max=sample_rate/2., sample_rate=sample_rate, norm='slaney' ) plot_mel_fbank(mel_filters, "Mel Filter Bank - torchaudio") Comparison against librosa ~~~~~~~~~~~~~~~~~~~~~~~~~~ As a comparison, here is the equivalent way to get the mel filter bank with ``librosa``. **Note** Currently, the result matches only when ``htk=True``. ``torchaudio`` does not support the equivalent of ``htk=False`` option. .. code-block:: default mel_filters_librosa = librosa.filters.mel( sample_rate, n_fft, n_mels=n_mels, fmin=0., fmax=sample_rate/2., norm='slaney', htk=True, ).T plot_mel_fbank(mel_filters_librosa, "Mel Filter Bank - librosa") mse = torch.square(mel_filters - mel_filters_librosa).mean().item() print('Mean Square Difference: ', mse) MelSpectrogram -------------- Mel-scale spectrogram is a combination of Spectrogram and mel scale conversion. In ``torchaudio``, there is a transform ``MelSpectrogram`` which is composed of ``Spectrogram`` and ``MelScale``. .. code-block:: default waveform, sample_rate = get_speech_sample() n_fft = 1024 win_length = None hop_length = 512 n_mels = 128 mel_spectrogram = T.MelSpectrogram( sample_rate=sample_rate, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True, pad_mode="reflect", power=2.0, norm='slaney', onesided=True, n_mels=n_mels, ) melspec = mel_spectrogram(waveform) plot_spectrogram( melspec[0], title="MelSpectrogram - torchaudio", ylabel='mel freq') Comparison against librosa ~~~~~~~~~~~~~~~~~~~~~~~~~~ As a comparison, here is the equivalent way to get Mel-scale spectrogram with ``librosa``. **Note** Currently, the result matches only when ``htk=True``. ``torchaudio`` does not support the equivalent of ``htk=False`` option. .. code-block:: default melspec_librosa = librosa.feature.melspectrogram( waveform.numpy()[0], sr=sample_rate, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=True, pad_mode="reflect", power=2.0, n_mels=n_mels, norm='slaney', htk=True, ) plot_spectrogram( melspec_librosa, title="MelSpectrogram - librosa", ylabel='mel freq') mse = torch.square(melspec - melspec_librosa).mean().item() print('Mean Square Difference: ', mse) MFCC ---- .. code-block:: default waveform, sample_rate = get_speech_sample() n_fft = 2048 win_length = None hop_length = 512 n_mels = 256 n_mfcc = 256 mfcc_transform = T.MFCC( sample_rate=sample_rate, n_mfcc=n_mfcc, melkwargs={'n_fft': n_fft, 'n_mels': n_mels, 'hop_length': hop_length}) mfcc = mfcc_transform(waveform) plot_spectrogram(mfcc[0]) Comparing against librosa ~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: default melspec = librosa.feature.melspectrogram( y=waveform.numpy()[0], sr=sample_rate, n_fft=n_fft, win_length=win_length, hop_length=hop_length, n_mels=n_mels, htk=True, norm=None) mfcc_librosa = librosa.feature.mfcc( S=librosa.core.spectrum.power_to_db(melspec), n_mfcc=n_mfcc, dct_type=2, norm='ortho') plot_spectrogram(mfcc_librosa) mse = torch.square(mfcc - mfcc_librosa).mean().item() print('Mean Square Difference: ', mse) Pitch ----- .. code-block:: default waveform, sample_rate = get_speech_sample() pitch = F.detect_pitch_frequency(waveform, sample_rate) plot_pitch(waveform, sample_rate, pitch) play_audio(waveform, sample_rate) Kaldi Pitch (beta) ------------------ Kaldi Pitch feature [1] is pitch detection mechanism tuned for ASR application. This is a beta feature in torchaudio, and only ``functional`` form is available. 1. A pitch extraction algorithm tuned for automatic speech recognition Ghahremani, B. BabaAli, D. Povey, K. Riedhammer, J. Trmal and S. Khudanpur 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, 2014, pp. 2494-2498, doi: 10.1109/ICASSP.2014.6854049. [`abstract `__], [`paper `__] .. code-block:: default waveform, sample_rate = get_speech_sample(resample=16000) pitch_feature = F.compute_kaldi_pitch(waveform, sample_rate) pitch, nfcc = pitch_feature[..., 0], pitch_feature[..., 1] plot_kaldi_pitch(waveform, sample_rate, pitch, nfcc) play_audio(waveform, sample_rate) Feature Augmentation ==================== SpecAugment ----------- `SpecAugment `__ is a popular augmentation technique applied on spectrogram. ``torchaudio`` implements ``TimeStrech``, ``TimeMasking`` and ``FrequencyMasking``. TimeStrech ~~~~~~~~~~ .. code-block:: default spec = get_spectrogram(power=None) strech = T.TimeStretch() rate = 1.2 spec_ = strech(spec, rate) plot_spectrogram(F.complex_norm(spec_[0]), title=f"Stretched x{rate}", aspect='equal', xmax=304) plot_spectrogram(F.complex_norm(spec[0]), title="Original", aspect='equal', xmax=304) rate = 0.9 spec_ = strech(spec, rate) plot_spectrogram(F.complex_norm(spec_[0]), title=f"Stretched x{rate}", aspect='equal', xmax=304) TimeMasking ~~~~~~~~~~~ .. code-block:: default torch.random.manual_seed(4) spec = get_spectrogram() plot_spectrogram(spec[0], title="Original") masking = T.TimeMasking(time_mask_param=80) spec = masking(spec) plot_spectrogram(spec[0], title="Masked along time axis") FrequencyMasking ~~~~~~~~~~~~~~~~ .. code-block:: default torch.random.manual_seed(4) spec = get_spectrogram() plot_spectrogram(spec[0], title="Original") masking = T.FrequencyMasking(freq_mask_param=80) spec = masking(spec) plot_spectrogram(spec[0], title="Masked along frequency axis") Datasets ======== ``torchaudio`` provides easy access to common, publicly accessible datasets. Please checkout the official documentation for the list of available datasets. Here, we take ``YESNO`` dataset and look into how to use it. .. code-block:: default YESNO_DOWNLOAD_PROCESS.join() dataset = torchaudio.datasets.YESNO(YESNO_DATASET_PATH, download=True) for i in [1, 3, 5]: waveform, sample_rate, label = dataset[i] plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}") play_audio(waveform, sample_rate) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.000 seconds) .. _sphx_glr_download_beginner_audio_preprocessing_tutorial.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: audio_preprocessing_tutorial.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: audio_preprocessing_tutorial.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_