.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_beginner_vt_tutorial.py: Optimizing Vision Transformer Model for Deployment =========================== Vision Transformer models apply the cutting-edge attention-based transformer models, introduced in Natural Language Processing to achieve all kinds of the state of the art (SOTA) results, to Computer Vision tasks. Facebook Data-efficient Image Transformers `DeiT `_ is a Vision Transformer model trained on ImageNet for image classification. In this tutorial, we will first cover what DeiT is and how to use it, then go through the complete steps of scripting, quantizing, optimizing, and using the model in iOS and Android apps. We will also compare the performance of quantized, optimized and non-quantized, non-optimized models, and show the benefits of applying quantization and optimization to the model along the steps. What is DeiT --------------------- Convolutional Neural Networks (CNNs) have been the main models for image classification since deep learning took off in 2012, but CNNs typically require hundreds of millions of images for training to achieve the SOTAresults. DeiT is a vision transformer model that requires a lot less data and computing resources for training to compete with the leading CNNs in performing image classification, which is made possible by two key components of of DeiT: - Data augmentation that simulates training on a much larger dataset; - Native distillation that allows the transformer network to learn from a CNN’s output. DeiT shows that Transformers can be successfully applied to computer vision tasks, with limited access to data and resources. For more details on DeiT, see the `repo `_ and `paper `_. Classifying Images with DeiT ------------------------------- Follow the README at the DeiT repo for detailed information on how to classify images using DeiT, or for a quick test, first install the required packages: :: pip install torch torchvision pip install timm pip install pandas pip install requests then run the script below: .. code-block:: default from PIL import Image import torch import timm import requests import torchvision.transforms as transforms from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD print(torch.__version__) # should be 1.8.0 model = torch.hub.load('facebookresearch/deit:main', 'deit_base_patch16_224', pretrained=True) model.eval() transform = transforms.Compose([ transforms.Resize(256, interpolation=3), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD), ]) img = Image.open(requests.get("https://raw.githubusercontent.com/pytorch/ios-demo-app/master/HelloWorld/HelloWorld/HelloWorld/image.png", stream=True).raw) img = transform(img)[None,] out = model(img) clsidx = torch.argmax(out) print(clsidx.item()) The output should be 269, which, according to the ImageNet list of class index to `labels file `_, maps to ‘timber wolf, grey wolf, gray wolf, Canis lupus’. Now that we have verified that we can use the DeiT model to classify images, let’s see how to modify the model so it can run on iOS and Android apps. Scripting DeiT ---------------------- To use the model on mobile, we first need to script the model. See the `Script and Optimize recipe `_ for a quick overview. Run the code below to convert the DeiT model used in the previous step to the TorchScript format that can run on mobile. .. code-block:: default model = torch.hub.load('facebookresearch/deit:main', 'deit_base_patch16_224', pretrained=True) model.eval() scripted_model = torch.jit.script(model) scripted_model.save("fbdeit_scripted.pt") The scripted model file fbdeit_scripted.pt of size about 346MB is generated. Quantizing DeiT --------------------- To reduce the trained model size significantly while keeping the inference accuracy about the same, quantization can be applied to the model. Thanks to the transformer model used in DeiT, we can easily apply dynamic-quantization to the model, because dynamic quantization works best for LSTM and transformer models (see `here `_ for more details). Now run the code below: .. code-block:: default # Use 'fbgemm' for server inference and 'qnnpack' for mobile inference backend = "fbgemm" # replaced with qnnpack causing much worse inference speed for quantized model on this notebook model.qconfig = torch.quantization.get_default_qconfig(backend) torch.backends.quantized.engine = backend quantized_model = torch.quantization.quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8) scripted_quantized_model = torch.jit.script(quantized_model) scripted_quantized_model.save("fbdeit_scripted_quantized.pt") This generates the scripted and quantized version of the model fbdeit_quantized_scripted.pt, with size about 89MB, a 74% reduction of the non-quantized model size of 346MB! You can use the ``scripted_quantized_model`` to generate the same inference result: .. code-block:: default out = scripted_quantized_model(img) clsidx = torch.argmax(out) print(clsidx.item()) # The same output 269 should be printed Optimizing DeiT --------------------- The final step before using the quantized and scripted model on mobile is to optimize it: .. code-block:: default from torch.utils.mobile_optimizer import optimize_for_mobile optimized_scripted_quantized_model = optimize_for_mobile(scripted_quantized_model) optimized_scripted_quantized_model.save("fbdeit_optimized_scripted_quantized.pt") The generated fbdeit_optimized_scripted_quantized.pt file has about the same size as the quantized, scripted, but non-optimized model. The inference result remains the same. .. code-block:: default out = optimized_scripted_quantized_model(img) clsidx = torch.argmax(out) print(clsidx.item()) # Again, the same output 269 should be printed Using Lite Interpreter ------------------------ To see how much model size reduction and inference speed up the Lite Interpreter can result in, let’s create the lite version of the model. .. code-block:: default optimized_scripted_quantized_model._save_for_lite_interpreter("fbdeit_optimized_scripted_quantized_lite.ptl") ptl = torch.jit.load("fbdeit_optimized_scripted_quantized_lite.ptl") Although the lite model size is comparable to the non-lite version, when running the lite version on mobile, the inference speed up is expected. Comparing Inference Speed --------------------------- To see how the inference speed differs for the four models - the original model, the scripted model, the quantized-and-scripted model, the optimized-quantized-and-scripted model - run the code below: .. code-block:: default with torch.autograd.profiler.profile(use_cuda=False) as prof1: out = model(img) with torch.autograd.profiler.profile(use_cuda=False) as prof2: out = scripted_model(img) with torch.autograd.profiler.profile(use_cuda=False) as prof3: out = scripted_quantized_model(img) with torch.autograd.profiler.profile(use_cuda=False) as prof4: out = optimized_scripted_quantized_model(img) with torch.autograd.profiler.profile(use_cuda=False) as prof5: out = ptl(img) print("original model: {:.2f}ms".format(prof1.self_cpu_time_total/1000)) print("scripted model: {:.2f}ms".format(prof2.self_cpu_time_total/1000)) print("scripted & quantized model: {:.2f}ms".format(prof3.self_cpu_time_total/1000)) print("scripted & quantized & optimized model: {:.2f}ms".format(prof4.self_cpu_time_total/1000)) print("lite model: {:.2f}ms".format(prof5.self_cpu_time_total/1000)) The results running on a Google Colab are: :: original model: 1236.69ms scripted model: 1226.72ms scripted & quantized model: 593.19ms scripted & quantized & optimized model: 598.01ms lite model: 600.72ms The following results summarize the inference time taken by each model and the percentage reduction of each model relative to the original model. .. code-block:: default import pandas as pd import numpy as np df = pd.DataFrame({'Model': ['original model','scripted model', 'scripted & quantized model', 'scripted & quantized & optimized model', 'lite model']}) df = pd.concat([df, pd.DataFrame([ ["{:.2f}ms".format(prof1.self_cpu_time_total/1000), "0%"], ["{:.2f}ms".format(prof2.self_cpu_time_total/1000), "{:.2f}%".format((prof1.self_cpu_time_total-prof2.self_cpu_time_total)/prof1.self_cpu_time_total*100)], ["{:.2f}ms".format(prof3.self_cpu_time_total/1000), "{:.2f}%".format((prof1.self_cpu_time_total-prof3.self_cpu_time_total)/prof1.self_cpu_time_total*100)], ["{:.2f}ms".format(prof4.self_cpu_time_total/1000), "{:.2f}%".format((prof1.self_cpu_time_total-prof4.self_cpu_time_total)/prof1.self_cpu_time_total*100)], ["{:.2f}ms".format(prof5.self_cpu_time_total/1000), "{:.2f}%".format((prof1.self_cpu_time_total-prof5.self_cpu_time_total)/prof1.self_cpu_time_total*100)]], columns=['Inference Time', 'Reduction'])], axis=1) print(df) """ Model Inference Time Reduction 0 original model 1236.69ms 0% 1 scripted model 1226.72ms 0.81% 2 scripted & quantized model 593.19ms 52.03% 3 scripted & quantized & optimized model 598.01ms 51.64% 4 lite model 600.72ms 51.43% """ Learn More ~~~~~~~~~~~~~~~~~ - `Facebook Data-efficient Image Transformers `__ - `Vision Transformer with ImageNet and MNIST on iOS `__ - `Vision Transformer with ImageNet and MNIST on Android `__ .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.000 seconds) .. _sphx_glr_download_beginner_vt_tutorial.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: vt_tutorial.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: vt_tutorial.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_