Note
Click here to download the full example code
Training Transformer models using Distributed Data Parallel and Pipeline Parallelism¶
Author: Pritam Damania
This tutorial demonstrates how to train a large Transformer model across multiple GPUs using Distributed Data Parallel and Pipeline Parallelism. This tutorial is an extension of the Sequence-to-Sequence Modeling with nn.Transformer and TorchText tutorial and scales up the same model to demonstrate how Distributed Data Parallel and Pipeline Parallelism can be used to train Transformer models.
Prerequisites:
Define the model¶
PositionalEncoding
module injects some information about the
relative or absolute position of the tokens in the sequence. The
positional encodings have the same dimension as the embeddings so that
the two can be summed. Here, we use sine
and cosine
functions of
different frequencies.
import sys
import os
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import tempfile
from torch.nn import TransformerEncoder, TransformerEncoderLayer
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
In this tutorial, we will split a Transformer model across two GPUs and use
pipeline parallelism to train the model. In addition to this, we use
Distributed Data Parallel
to train two replicas of this pipeline. We have one process driving a pipe across
GPUs 0 and 1 and another process driving a pipe across GPUs 2 and 3. Both these
processes then use Distributed Data Parallel to train the two replicas. The
model is exactly the same model used in the Sequence-to-Sequence Modeling with nn.Transformer and TorchText tutorial,
but is split into two stages. The largest number of parameters belong to the
nn.TransformerEncoder layer.
The nn.TransformerEncoder
itself consists of nlayers
of nn.TransformerEncoderLayer.
As a result, our focus is on nn.TransformerEncoder
and we split the model
such that half of the nn.TransformerEncoderLayer
are on one GPU and the
other half are on another. To do this, we pull out the Encoder
and
Decoder
sections into seperate modules and then build an nn.Sequential
representing the original Transformer module.
if sys.platform == 'win32':
print('Windows platform is not supported for pipeline parallelism')
sys.exit(0)
if torch.cuda.device_count() < 4:
print('Need at least four GPU devices for this tutorial')
sys.exit(0)
class Encoder(nn.Module):
def __init__(self, ntoken, ninp, dropout=0.5):
super(Encoder, self).__init__()
self.pos_encoder = PositionalEncoding(ninp, dropout)
self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
self.init_weights()
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src):
# Need (S, N) format for encoder.
src = src.t()
src = self.encoder(src) * math.sqrt(self.ninp)
return self.pos_encoder(src)
class Decoder(nn.Module):
def __init__(self, ntoken, ninp):
super(Decoder, self).__init__()
self.decoder = nn.Linear(ninp, ntoken)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, inp):
# Need batch dimension first for output of pipeline.
return self.decoder(inp).permute(1, 0, 2)
Start multiple processes for training¶
We start two processes where each process drives its own pipeline across two
GPUs. run_worker
is executed for each process.
def run_worker(rank, world_size):
Load and batch data¶
The training process uses Wikitext-2 dataset from torchtext
. The
vocab object is built based on the train dataset and is used to numericalize
tokens into tensors. Starting from sequential data, the batchify()
function arranges the dataset into columns, trimming off any tokens remaining
after the data has been divided into batches of size batch_size
.
For instance, with the alphabet as the sequence (total length of 26)
and a batch size of 4, we would divide the alphabet into 4 sequences of
length 6:
These columns are treated as independent by the model, which means that
the dependence of G
and F
can not be learned, but allows more
efficient batch processing.
# In 'run_worker'
def print_with_rank(msg):
print('[RANK {}]: {}'.format(rank, msg))
import io
from torchtext.utils import download_from_url, extract_archive
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
url = 'https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip'
test_filepath, valid_filepath, train_filepath = extract_archive(download_from_url(url, root=".data{}".format(rank)))
tokenizer = get_tokenizer('basic_english')
vocab = build_vocab_from_iterator(map(tokenizer,
iter(io.open(train_filepath,
encoding="utf8"))))
def data_process(raw_text_iter):
data = [torch.tensor([vocab[token] for token in tokenizer(item)],
dtype=torch.long) for item in raw_text_iter]
return torch.cat(tuple(filter(lambda t: t.numel() > 0, data)))
train_data = data_process(iter(io.open(train_filepath, encoding="utf8")))
val_data = data_process(iter(io.open(valid_filepath, encoding="utf8")))
test_data = data_process(iter(io.open(test_filepath, encoding="utf8")))
device = torch.device(2 * rank)
def batchify(data, bsz, rank, world_size, is_train=False):
# Divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
# Divide the data across the ranks only for training data.
if is_train:
data_per_rank = data.size(0) // world_size
data = data[rank * data_per_rank : (rank + 1) * data_per_rank]
return data.to(device)
batch_size = 20
eval_batch_size = 10
train_data = batchify(train_data, batch_size, rank, world_size, True)
val_data = batchify(val_data, eval_batch_size, rank, world_size)
test_data = batchify(test_data, eval_batch_size, rank, world_size)
Functions to generate input and target sequence¶
get_batch()
function generates the input and target sequence for
the transformer model. It subdivides the source data into chunks of
length bptt
. For the language modeling task, the model needs the
following words as Target
. For example, with a bptt
value of 2,
we’d get the following two Variables for i
= 0:
It should be noted that the chunks are along dimension 0, consistent
with the S
dimension in the Transformer model. The batch dimension
N
is along dimension 1.
# In 'run_worker'
bptt = 35
def get_batch(source, i):
seq_len = min(bptt, len(source) - 1 - i)
data = source[i:i+seq_len]
target = source[i+1:i+1+seq_len].view(-1)
# Need batch dimension first for pipeline parallelism.
return data.t(), target
Model scale and Pipe initialization¶
To demonstrate training large Transformer models using pipeline parallelism,
we scale up the Transformer layers appropriately. We use an embedding
dimension of 4096, hidden size of 4096, 16 attention heads and 8 total
transformer layers (nn.TransformerEncoderLayer
). This creates a model with
~1 billion parameters.
We need to initialize the RPC Framework since Pipe depends on the RPC framework via RRef which allows for future expansion to cross host pipelining. We need to initialize the RPC framework with only a single worker since we’re using a single process to drive multiple GPUs.
The pipeline is then initialized with 8 transformer layers on one GPU and 8 transformer layers on the other GPU. One pipe is setup across GPUs 0 and 1 and another across GPUs 2 and 3. Both pipes are then replicated using DistributedDataParallel.
# In 'run_worker'
ntokens = len(vocab.stoi) # the size of vocabulary
emsize = 4096 # embedding dimension
nhid = 4096 # the dimension of the feedforward network model in nn.TransformerEncoder
nlayers = 8 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder
nhead = 16 # the number of heads in the multiheadattention models
dropout = 0.2 # the dropout value
from torch.distributed import rpc
tmpfile = tempfile.NamedTemporaryFile()
rpc.init_rpc(
name="worker",
rank=0,
world_size=1,
rpc_backend_options=rpc.TensorPipeRpcBackendOptions(
init_method="file://{}".format(tmpfile.name),
# Specifying _transports and _channels is a workaround and we no longer
# will have to specify _transports and _channels for PyTorch
# versions >= 1.8.1
_transports=["ibv", "uv"],
_channels=["cuda_ipc", "cuda_basic"],
)
)
# Num gpus for model parallelism.
num_gpus = 2
partition_len = ((nlayers - 1) // num_gpus) + 1
# Add encoder in the beginning.
tmp_list = [Encoder(ntokens, emsize, dropout).cuda(2 * rank)]
module_list = []
# Add all the necessary transformer blocks.
for i in range(nlayers):
transformer_block = TransformerEncoderLayer(emsize, nhead, nhid, dropout)
if i != 0 and i % (partition_len) == 0:
module_list.append(nn.Sequential(*tmp_list))
tmp_list = []
device = i // (partition_len)
tmp_list.append(transformer_block.to(2 * rank + device))
# Add decoder in the end.
tmp_list.append(Decoder(ntokens, emsize).cuda(2 * rank + num_gpus - 1))
module_list.append(nn.Sequential(*tmp_list))
# Need to use 'checkpoint=never' since as of PyTorch 1.8, Pipe checkpointing
# doesn't work with DDP.
from torch.distributed.pipeline.sync import Pipe
chunks = 8
model = Pipe(torch.nn.Sequential(
*module_list), chunks = chunks, checkpoint="never")
# Initialize process group and wrap model in DDP.
from torch.nn.parallel import DistributedDataParallel
import torch.distributed as dist
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '29500'
dist.init_process_group(
backend="nccl", rank=rank, world_size=world_size)
model = DistributedDataParallel(model)
def get_total_params(module: torch.nn.Module):
total_params = 0
for param in module.parameters():
total_params += param.numel()
return total_params
print_with_rank('Total parameters in model: {:,}'.format(get_total_params(model)))
Run the model¶
CrossEntropyLoss is applied to track the loss and SGD implements stochastic gradient descent method as the optimizer. The initial learning rate is set to 5.0. StepLR is applied to adjust the learn rate through epochs. During the training, we use nn.utils.clip_grad_norm_ function to scale all the gradient together to prevent exploding.
# In 'run_worker'
criterion = nn.CrossEntropyLoss()
lr = 5.0 # learning rate
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
import time
def train():
model.train() # Turn on the train mode
total_loss = 0.
start_time = time.time()
ntokens = len(vocab.stoi)
# Train only for 50 batches to keep script execution time low.
nbatches = min(50 * bptt, train_data.size(0) - 1)
for batch, i in enumerate(range(0, nbatches, bptt)):
data, targets = get_batch(train_data, i)
optimizer.zero_grad()
# Since the Pipe is only within a single host and process the ``RRef``
# returned by forward method is local to this node and can simply
# retrieved via ``RRef.local_value()``.
output = model(data).local_value()
# Need to move targets to the device where the output of the
# pipeline resides.
loss = criterion(output.view(-1, ntokens), targets.cuda(2 * rank + 1))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
total_loss += loss.item()
log_interval = 10
if batch % log_interval == 0 and batch > 0:
cur_loss = total_loss / log_interval
elapsed = time.time() - start_time
print_with_rank('| epoch {:3d} | {:5d}/{:5d} batches | '
'lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, nbatches // bptt, scheduler.get_lr()[0],
elapsed * 1000 / log_interval,
cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
def evaluate(eval_model, data_source):
eval_model.eval() # Turn on the evaluation mode
total_loss = 0.
ntokens = len(vocab.stoi)
# Evaluate only for 50 batches to keep script execution time low.
nbatches = min(50 * bptt, data_source.size(0) - 1)
with torch.no_grad():
for i in range(0, nbatches, bptt):
data, targets = get_batch(data_source, i)
output = eval_model(data).local_value()
output_flat = output.view(-1, ntokens)
# Need to move targets to the device where the output of the
# pipeline resides.
total_loss += len(data) * criterion(output_flat, targets.cuda(2 * rank + 1)).item()
return total_loss / (len(data_source) - 1)
Loop over epochs. Save the model if the validation loss is the best we’ve seen so far. Adjust the learning rate after each epoch.
# In 'run_worker'
best_val_loss = float("inf")
epochs = 3 # The number of epochs
best_model = None
for epoch in range(1, epochs + 1):
epoch_start_time = time.time()
train()
val_loss = evaluate(model, val_data)
print_with_rank('-' * 89)
print_with_rank('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
val_loss, math.exp(val_loss)))
print_with_rank('-' * 89)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model = model
scheduler.step()
Evaluate the model with the test dataset¶
Apply the best model to check the result with the test dataset.
# In 'run_worker'
test_loss = evaluate(best_model, test_data)
print_with_rank('=' * 89)
print_with_rank('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)))
print_with_rank('=' * 89)
# Main execution
import torch.multiprocessing as mp
if __name__=="__main__":
world_size = 2
mp.spawn(run_worker, args=(world_size, ), nprocs=world_size, join=True)
Output¶
[RANK 1]: Total parameters in model: 1,041,453,167
[RANK 0]: Total parameters in model: 1,041,453,167
[RANK 0]: | epoch 1 | 10/ 50 batches | lr 5.00 | ms/batch 1414.18 | loss 48.70 | ppl 1406154472673147092992.00
[RANK 1]: | epoch 1 | 10/ 50 batches | lr 5.00 | ms/batch 1414.42 | loss 48.49 | ppl 1146707511057334927360.00
[RANK 0]: | epoch 1 | 20/ 50 batches | lr 5.00 | ms/batch 1260.76 | loss 42.74 | ppl 3648812398518492672.00
[RANK 1]: | epoch 1 | 20/ 50 batches | lr 5.00 | ms/batch 1260.76 | loss 41.51 | ppl 1064844757565813248.00
[RANK 0]: | epoch 1 | 30/ 50 batches | lr 5.00 | ms/batch 1246.80 | loss 41.85 | ppl 1497706388552644096.00
[RANK 1]: | epoch 1 | 30/ 50 batches | lr 5.00 | ms/batch 1246.80 | loss 40.46 | ppl 373830103285747072.00
[RANK 0]: | epoch 1 | 40/ 50 batches | lr 5.00 | ms/batch 1246.69 | loss 39.76 | ppl 185159839078666368.00
[RANK 1]: | epoch 1 | 40/ 50 batches | lr 5.00 | ms/batch 1246.69 | loss 39.89 | ppl 211756997625874912.00
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 0]: | end of epoch 1 | time: 69.37s | valid loss 2.92 | valid ppl 18.46
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 1]: | end of epoch 1 | time: 69.39s | valid loss 2.92 | valid ppl 18.46
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 1]: | epoch 2 | 10/ 50 batches | lr 4.51 | ms/batch 1373.91 | loss 39.77 | ppl 187532281612905856.00
[RANK 0]: | epoch 2 | 10/ 50 batches | lr 4.51 | ms/batch 1375.62 | loss 39.05 | ppl 91344349371016336.00
[RANK 0]: | epoch 2 | 20/ 50 batches | lr 4.51 | ms/batch 1250.33 | loss 30.62 | ppl 19917977906884.78
[RANK 1]: | epoch 2 | 20/ 50 batches | lr 4.51 | ms/batch 1250.33 | loss 30.48 | ppl 17250186491252.32
[RANK 1]: | epoch 2 | 30/ 50 batches | lr 4.51 | ms/batch 1250.73 | loss 29.14 | ppl 4534527326854.47
[RANK 0]: | epoch 2 | 30/ 50 batches | lr 4.51 | ms/batch 1250.73 | loss 29.43 | ppl 6035762659681.65
[RANK 0]: | epoch 2 | 40/ 50 batches | lr 4.51 | ms/batch 1249.54 | loss 23.11 | ppl 10869828323.89
[RANK 1]: | epoch 2 | 40/ 50 batches | lr 4.51 | ms/batch 1249.55 | loss 22.90 | ppl 8785318464.24
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 0]: | end of epoch 2 | time: 69.02s | valid loss 0.94 | valid ppl 2.55
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 1]: | end of epoch 2 | time: 69.05s | valid loss 0.94 | valid ppl 2.55
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 0]: | epoch 3 | 10/ 50 batches | lr 4.29 | ms/batch 1380.66 | loss 12.98 | ppl 434052.59
[RANK 1]: | epoch 3 | 10/ 50 batches | lr 4.29 | ms/batch 1376.47 | loss 12.92 | ppl 410203.33
[RANK 1]: | epoch 3 | 20/ 50 batches | lr 4.29 | ms/batch 1250.88 | loss 9.80 | ppl 18034.58
[RANK 0]: | epoch 3 | 20/ 50 batches | lr 4.29 | ms/batch 1250.88 | loss 9.78 | ppl 17741.88
[RANK 0]: | epoch 3 | 30/ 50 batches | lr 4.29 | ms/batch 1251.89 | loss 10.37 | ppl 32016.45
[RANK 1]: | epoch 3 | 30/ 50 batches | lr 4.29 | ms/batch 1251.90 | loss 10.46 | ppl 34735.08
[RANK 0]: | epoch 3 | 40/ 50 batches | lr 4.29 | ms/batch 1250.70 | loss 10.09 | ppl 24147.61
[RANK 1]: | epoch 3 | 40/ 50 batches | lr 4.29 | ms/batch 1250.71 | loss 10.08 | ppl 23748.31
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 0]: | end of epoch 3 | time: 69.12s | valid loss 0.69 | valid ppl 2.00
[RANK 0]: -----------------------------------------------------------------------------------------
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 1]: | end of epoch 3 | time: 69.12s | valid loss 0.69 | valid ppl 2.00
[RANK 1]: -----------------------------------------------------------------------------------------
[RANK 0]: =========================================================================================
[RANK 0]: | End of training | test loss 0.60 | test ppl 1.83
[RANK 0]: =========================================================================================
[RANK 1]: =========================================================================================
[RANK 1]: | End of training | test loss 0.60 | test ppl 1.83
Total running time of the script: ( 0 minutes 0.000 seconds)