Note
Click here to download the full example code
Audio manipulation with torchaudio¶
torchaudio
provides powerful audio I/O functions, preprocessing
transforms and dataset.
In this tutorial, we will look into how to prepare audio data and extract features that can be fed to NN models.
# When running this tutorial in Google Colab, install the required packages
# with the following.
# !pip install torchaudio librosa boto3
import torch
import torchaudio
import torchaudio.functional as F
import torchaudio.transforms as T
print(torch.__version__)
print(torchaudio.__version__)
Preparing data and utility functions (skip this section)¶
#@title Prepare data and utility functions. {display-mode: "form"}
#@markdown
#@markdown You do not need to look into this cell.
#@markdown Just execute once and you are good to go.
#@markdown
#@markdown In this tutorial, we will use a speech data from [VOiCES dataset](https://iqtlabs.github.io/voices/), which is licensed under Creative Commos BY 4.0.
#-------------------------------------------------------------------------------
# Preparation of data and helper functions.
#-------------------------------------------------------------------------------
import io
import os
import math
import tarfile
import multiprocessing
import scipy
import librosa
import boto3
from botocore import UNSIGNED
from botocore.config import Config
import requests
import matplotlib
import matplotlib.pyplot as plt
from IPython.display import Audio, display
[width, height] = matplotlib.rcParams['figure.figsize']
if width < 10:
matplotlib.rcParams['figure.figsize'] = [width * 2.5, height]
_SAMPLE_DIR = "_sample_data"
SAMPLE_WAV_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/steam-train-whistle-daniel_simon.wav"
SAMPLE_WAV_PATH = os.path.join(_SAMPLE_DIR, "steam.wav")
SAMPLE_WAV_SPEECH_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
SAMPLE_WAV_SPEECH_PATH = os.path.join(_SAMPLE_DIR, "speech.wav")
SAMPLE_RIR_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/distant-16k/room-response/rm1/impulse/Lab41-SRI-VOiCES-rm1-impulse-mc01-stu-clo.wav"
SAMPLE_RIR_PATH = os.path.join(_SAMPLE_DIR, "rir.wav")
SAMPLE_NOISE_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/distant-16k/distractors/rm1/babb/Lab41-SRI-VOiCES-rm1-babb-mc01-stu-clo.wav"
SAMPLE_NOISE_PATH = os.path.join(_SAMPLE_DIR, "bg.wav")
SAMPLE_MP3_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/steam-train-whistle-daniel_simon.mp3"
SAMPLE_MP3_PATH = os.path.join(_SAMPLE_DIR, "steam.mp3")
SAMPLE_GSM_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/steam-train-whistle-daniel_simon.gsm"
SAMPLE_GSM_PATH = os.path.join(_SAMPLE_DIR, "steam.gsm")
SAMPLE_TAR_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit.tar.gz"
SAMPLE_TAR_PATH = os.path.join(_SAMPLE_DIR, "sample.tar.gz")
SAMPLE_TAR_ITEM = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
S3_BUCKET = "pytorch-tutorial-assets"
S3_KEY = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
YESNO_DATASET_PATH = os.path.join(_SAMPLE_DIR, "yes_no")
os.makedirs(YESNO_DATASET_PATH, exist_ok=True)
os.makedirs(_SAMPLE_DIR, exist_ok=True)
def _fetch_data():
uri = [
(SAMPLE_WAV_URL, SAMPLE_WAV_PATH),
(SAMPLE_WAV_SPEECH_URL, SAMPLE_WAV_SPEECH_PATH),
(SAMPLE_RIR_URL, SAMPLE_RIR_PATH),
(SAMPLE_NOISE_URL, SAMPLE_NOISE_PATH),
(SAMPLE_MP3_URL, SAMPLE_MP3_PATH),
(SAMPLE_GSM_URL, SAMPLE_GSM_PATH),
(SAMPLE_TAR_URL, SAMPLE_TAR_PATH),
]
for url, path in uri:
with open(path, 'wb') as file_:
file_.write(requests.get(url).content)
_fetch_data()
def _download_yesno():
if os.path.exists(os.path.join(YESNO_DATASET_PATH, "waves_yesno.tar.gz")):
return
torchaudio.datasets.YESNO(root=YESNO_DATASET_PATH, download=True)
YESNO_DOWNLOAD_PROCESS = multiprocessing.Process(target=_download_yesno)
YESNO_DOWNLOAD_PROCESS.start()
def _get_sample(path, resample=None):
effects = [
["remix", "1"]
]
if resample:
effects.append(["rate", f'{resample}'])
return torchaudio.sox_effects.apply_effects_file(path, effects=effects)
def get_speech_sample(*, resample=None):
return _get_sample(SAMPLE_WAV_SPEECH_PATH, resample=resample)
def get_sample(*, resample=None):
return _get_sample(SAMPLE_WAV_PATH, resample=resample)
def get_rir_sample(*, resample=None, processed=False):
rir_raw, sample_rate = _get_sample(SAMPLE_RIR_PATH, resample=resample)
if not processed:
return rir_raw, sample_rate
rir = rir_raw[:, int(sample_rate*1.01):int(sample_rate*1.3)]
rir = rir / torch.norm(rir, p=2)
rir = torch.flip(rir, [1])
return rir, sample_rate
def get_noise_sample(*, resample=None):
return _get_sample(SAMPLE_NOISE_PATH, resample=resample)
def print_metadata(metadata, src=None):
if src:
print("-" * 10)
print("Source:", src)
print("-" * 10)
print(" - sample_rate:", metadata.sample_rate)
print(" - num_channels:", metadata.num_channels)
print(" - num_frames:", metadata.num_frames)
print(" - bits_per_sample:", metadata.bits_per_sample)
print(" - encoding:", metadata.encoding)
print()
def print_stats(waveform, sample_rate=None, src=None):
if src:
print("-" * 10)
print("Source:", src)
print("-" * 10)
if sample_rate:
print("Sample Rate:", sample_rate)
print("Shape:", tuple(waveform.shape))
print("Dtype:", waveform.dtype)
print(f" - Max: {waveform.max().item():6.3f}")
print(f" - Min: {waveform.min().item():6.3f}")
print(f" - Mean: {waveform.mean().item():6.3f}")
print(f" - Std Dev: {waveform.std().item():6.3f}")
print()
print(waveform)
print()
def plot_waveform(waveform, sample_rate, title="Waveform", xlim=None, ylim=None):
waveform = waveform.numpy()
num_channels, num_frames = waveform.shape
time_axis = torch.arange(0, num_frames) / sample_rate
figure, axes = plt.subplots(num_channels, 1)
if num_channels == 1:
axes = [axes]
for c in range(num_channels):
axes[c].plot(time_axis, waveform[c], linewidth=1)
axes[c].grid(True)
if num_channels > 1:
axes[c].set_ylabel(f'Channel {c+1}')
if xlim:
axes[c].set_xlim(xlim)
if ylim:
axes[c].set_ylim(ylim)
figure.suptitle(title)
plt.show(block=False)
def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
waveform = waveform.numpy()
num_channels, num_frames = waveform.shape
time_axis = torch.arange(0, num_frames) / sample_rate
figure, axes = plt.subplots(num_channels, 1)
if num_channels == 1:
axes = [axes]
for c in range(num_channels):
axes[c].specgram(waveform[c], Fs=sample_rate)
if num_channels > 1:
axes[c].set_ylabel(f'Channel {c+1}')
if xlim:
axes[c].set_xlim(xlim)
figure.suptitle(title)
plt.show(block=False)
def play_audio(waveform, sample_rate):
waveform = waveform.numpy()
num_channels, num_frames = waveform.shape
if num_channels == 1:
display(Audio(waveform[0], rate=sample_rate))
elif num_channels == 2:
display(Audio((waveform[0], waveform[1]), rate=sample_rate))
else:
raise ValueError("Waveform with more than 2 channels are not supported.")
def inspect_file(path):
print("-" * 10)
print("Source:", path)
print("-" * 10)
print(f" - File size: {os.path.getsize(path)} bytes")
print_metadata(torchaudio.info(path))
def plot_spectrogram(spec, title=None, ylabel='freq_bin', aspect='auto', xmax=None):
fig, axs = plt.subplots(1, 1)
axs.set_title(title or 'Spectrogram (db)')
axs.set_ylabel(ylabel)
axs.set_xlabel('frame')
im = axs.imshow(librosa.power_to_db(spec), origin='lower', aspect=aspect)
if xmax:
axs.set_xlim((0, xmax))
fig.colorbar(im, ax=axs)
plt.show(block=False)
def plot_mel_fbank(fbank, title=None):
fig, axs = plt.subplots(1, 1)
axs.set_title(title or 'Filter bank')
axs.imshow(fbank, aspect='auto')
axs.set_ylabel('frequency bin')
axs.set_xlabel('mel bin')
plt.show(block=False)
def get_spectrogram(
n_fft = 400,
win_len = None,
hop_len = None,
power = 2.0,
):
waveform, _ = get_speech_sample()
spectrogram = T.Spectrogram(
n_fft=n_fft,
win_length=win_len,
hop_length=hop_len,
center=True,
pad_mode="reflect",
power=power,
)
return spectrogram(waveform)
def plot_pitch(waveform, sample_rate, pitch):
figure, axis = plt.subplots(1, 1)
axis.set_title("Pitch Feature")
axis.grid(True)
end_time = waveform.shape[1] / sample_rate
time_axis = torch.linspace(0, end_time, waveform.shape[1])
axis.plot(time_axis, waveform[0], linewidth=1, color='gray', alpha=0.3)
axis2 = axis.twinx()
time_axis = torch.linspace(0, end_time, pitch.shape[1])
ln2 = axis2.plot(
time_axis, pitch[0], linewidth=2, label='Pitch', color='green')
axis2.legend(loc=0)
plt.show(block=False)
def plot_kaldi_pitch(waveform, sample_rate, pitch, nfcc):
figure, axis = plt.subplots(1, 1)
axis.set_title("Kaldi Pitch Feature")
axis.grid(True)
end_time = waveform.shape[1] / sample_rate
time_axis = torch.linspace(0, end_time, waveform.shape[1])
axis.plot(time_axis, waveform[0], linewidth=1, color='gray', alpha=0.3)
time_axis = torch.linspace(0, end_time, pitch.shape[1])
ln1 = axis.plot(time_axis, pitch[0], linewidth=2, label='Pitch', color='green')
axis.set_ylim((-1.3, 1.3))
axis2 = axis.twinx()
time_axis = torch.linspace(0, end_time, nfcc.shape[1])
ln2 = axis2.plot(
time_axis, nfcc[0], linewidth=2, label='NFCC', color='blue', linestyle='--')
lns = ln1 + ln2
labels = [l.get_label() for l in lns]
axis.legend(lns, labels, loc=0)
plt.show(block=False)
Audio I/O¶
torchaudio integrates libsox
and provides a rich set of audio I/O.
Quering audio metadata¶
torchaudio.info
function fetches metadata of audio. You can provide
a path-like object or file-like object.
metadata = torchaudio.info(SAMPLE_WAV_PATH)
print_metadata(metadata, src=SAMPLE_WAV_PATH)
Where
sample_rate
is the sampling rate of the audionum_channels
is the number of channelsnum_frames
is the number of frames per channelbits_per_sample
is bit depthencoding
is the sample coding format
The values encoding
can take are one of the following
"PCM_S"
: Signed integer linear PCM"PCM_U"
: Unsigned integer linear PCM"PCM_F"
: Floating point linear PCM"FLAC"
: Flac, Free Lossless Audio Codec"ULAW"
: Mu-law, [wikipedia]"ALAW"
: A-law [wikipedia]"MP3"
: MP3, MPEG-1 Audio Layer III"VORBIS"
: OGG Vorbis [xiph.org]"AMR_NB"
: Adaptive Multi-Rate [wikipedia]"AMR_WB"
: Adaptive Multi-Rate Wideband [wikipedia]"OPUS"
: Opus [opus-codec.org]"GSM"
: GSM-FR [wikipedia]"UNKNOWN"
None of avobe
Note
bits_per_sample
can be0
for formats with compression and/or variable bit rate. (such as mp3)num_frames
can be0
for GSM-FR format.
metadata = torchaudio.info(SAMPLE_MP3_PATH)
print_metadata(metadata, src=SAMPLE_MP3_PATH)
metadata = torchaudio.info(SAMPLE_GSM_PATH)
print_metadata(metadata, src=SAMPLE_GSM_PATH)
Querying file-like object¶
info
function works on file-like object as well.
with requests.get(SAMPLE_WAV_URL, stream=True) as response:
metadata = torchaudio.info(response.raw)
print_metadata(metadata, src=SAMPLE_WAV_URL)
Note When passing file-like object, info
function does not read
all the data, instead it only reads the beginning portion of data.
Therefore, depending on the audio format, it cannot get the correct
metadata, including the format itself. The following example illustrates
this.
- Use
format
argument to tell what audio format it is. - The returned metadata has
num_frames = 0
with requests.get(SAMPLE_MP3_URL, stream=True) as response:
metadata = torchaudio.info(response.raw, format="mp3")
print(f"Fetched {response.raw.tell()} bytes.")
print_metadata(metadata, src=SAMPLE_MP3_URL)
Loading audio data into Tensor¶
To load audio data, you can use torchaudio.load
.
This function accepts path-like object and file-like object.
The returned value is a tuple of waveform (Tensor
) and sample rate
(int
).
By default, the resulting tensor object has dtype=torch.float32
and
its value range is normalized within [-1.0, 1.0]
.
For the list of supported format, please refer to the torchaudio documentation.
waveform, sample_rate = torchaudio.load(SAMPLE_WAV_SPEECH_PATH)
print_stats(waveform, sample_rate=sample_rate)
plot_waveform(waveform, sample_rate)
plot_specgram(waveform, sample_rate)
play_audio(waveform, sample_rate)
Loading from file-like object¶
torchaudio
’s I/O functions now support file-like object. This
allows to fetch audio data and decode at the same time from the location
other than local file system. The following examples illustrates this.
# Load audio data as HTTP request
with requests.get(SAMPLE_WAV_SPEECH_URL, stream=True) as response:
waveform, sample_rate = torchaudio.load(response.raw)
plot_specgram(waveform, sample_rate, title="HTTP datasource")
# Load audio from tar file
with tarfile.open(SAMPLE_TAR_PATH, mode='r') as tarfile_:
fileobj = tarfile_.extractfile(SAMPLE_TAR_ITEM)
waveform, sample_rate = torchaudio.load(fileobj)
plot_specgram(waveform, sample_rate, title="TAR file")
# Load audio from S3
client = boto3.client('s3', config=Config(signature_version=UNSIGNED))
response = client.get_object(Bucket=S3_BUCKET, Key=S3_KEY)
waveform, sample_rate = torchaudio.load(response['Body'])
plot_specgram(waveform, sample_rate, title="From S3")
Tips on slicing¶
Providing num_frames
and frame_offset
arguments will slice the
resulting Tensor object while decoding.
The same result can be achieved using the regular Tensor slicing,
(i.e. waveform[:, frame_offset:frame_offset+num_frames]
) however,
providing num_frames
and frame_offset
arguments is more
efficient.
This is because the function will stop data acquisition and decoding once it finishes decoding the requested frames. This is advantageous when the audio data are transfered via network as the data transfer will stop as soon as the necessary amount of data is fetched.
The following example illustrates this;
# Illustration of two different decoding methods.
# The first one will fetch all the data and decode them, while
# the second one will stop fetching data once it completes decoding.
# The resulting waveforms are identical.
frame_offset, num_frames = 16000, 16000 # Fetch and decode the 1 - 2 seconds
print("Fetching all the data...")
with requests.get(SAMPLE_WAV_SPEECH_URL, stream=True) as response:
waveform1, sample_rate1 = torchaudio.load(response.raw)
waveform1 = waveform1[:, frame_offset:frame_offset+num_frames]
print(f" - Fetched {response.raw.tell()} bytes")
print("Fetching until the requested frames are available...")
with requests.get(SAMPLE_WAV_SPEECH_URL, stream=True) as response:
waveform2, sample_rate2 = torchaudio.load(
response.raw, frame_offset=frame_offset, num_frames=num_frames)
print(f" - Fetched {response.raw.tell()} bytes")
print("Checking the resulting waveform ... ", end="")
assert (waveform1 == waveform2).all()
print("matched!")
Saving audio to file¶
To save audio data in the formats intepretable by common applications,
you can use torchaudio.save
.
This function accepts path-like object and file-like object.
When passing file-like object, you also need to provide format
argument so that the function knows which format it should be using. In
case of path-like object, the function will detemine the format based on
the extension. If you are saving to a file without extension, you need
to provide format
argument.
When saving as WAV format, the default encoding for float32
Tensor
is 32-bit floating-point PCM. You can provide encoding
and
bits_per_sample
argument to change this. For example, to save data
in 16 bit signed integer PCM, you can do the following.
Note Saving data in encodings with lower bit depth reduces the resulting file size but loses precision.
waveform, sample_rate = get_sample()
print_stats(waveform, sample_rate=sample_rate)
# Save without any encoding option.
# The function will pick up the encoding which
# the provided data fit
path = "save_example_default.wav"
torchaudio.save(path, waveform, sample_rate)
inspect_file(path)
# Save as 16-bit signed integer Linear PCM
# The resulting file occupies half the storage but loses precision
path = "save_example_PCM_S16.wav"
torchaudio.save(
path, waveform, sample_rate,
encoding="PCM_S", bits_per_sample=16)
inspect_file(path)
torchaudio.save
can also handle other formats. To name a few;
waveform, sample_rate = get_sample()
formats = [
"mp3",
"flac",
"vorbis",
"sph",
"amb",
"amr-nb",
"gsm",
]
for format in formats:
path = f"save_example.{format}"
torchaudio.save(path, waveform, sample_rate, format=format)
inspect_file(path)
Saving to file-like object¶
Similar to the other I/O functions, you can save audio into file-like
object. When saving to file-like object, format
argument is
required.
waveform, sample_rate = get_sample()
# Saving to Bytes buffer
buffer_ = io.BytesIO()
torchaudio.save(buffer_, waveform, sample_rate, format="wav")
buffer_.seek(0)
print(buffer_.read(16))
Data Augmentation¶
torchaudio
provides a variety of ways to augment audio data.
Applying effects and filtering¶
torchaudio.sox_effects
module provides ways to apply filiters like
sox
command on Tensor objects and file-object audio sources
directly.
There are two functions for this;
torchaudio.sox_effects.apply_effects_tensor
for applying effects on Tensortorchaudio.sox_effects.apply_effects_file
for applying effects on other audio source
Both function takes effects in the form of List[List[str]]
. This
mostly corresponds to how sox
command works, but one caveat is that
sox
command adds some effects automatically, but torchaudio’s
implementation does not do that.
For the list of available effects, please refer to the sox documentation.
Tip If you need to load and resample your audio data on-the-fly,
then you can use torchaudio.sox_effects.apply_effects_file
with
"rate"
effect.
Note apply_effects_file
accepts file-like object or path-like
object. Similar to torchaudio.load
, when the audio format cannot be
detected from either file extension or header, you can provide
format
argument to tell what format the audio source is.
Note This process is not differentiable.
# Load the data
waveform1, sample_rate1 = get_sample(resample=16000)
# Define effects
effects = [
["lowpass", "-1", "300"], # apply single-pole lowpass filter
["speed", "0.8"], # reduce the speed
# This only changes sample rate, so it is necessary to
# add `rate` effect with original sample rate after this.
["rate", f"{sample_rate1}"],
["reverb", "-w"], # Reverbration gives some dramatic feeling
]
# Apply effects
waveform2, sample_rate2 = torchaudio.sox_effects.apply_effects_tensor(
waveform1, sample_rate1, effects)
plot_waveform(waveform1, sample_rate1, title="Original", xlim=(-.1, 3.2))
plot_waveform(waveform2, sample_rate2, title="Effects Applied", xlim=(-.1, 3.2))
print_stats(waveform1, sample_rate=sample_rate1, src="Original")
print_stats(waveform2, sample_rate=sample_rate2, src="Effects Applied")
Note that the number of frames and number of channels are different from the original after the effects. Let’s listen to the audio. Doesn’t it sound more dramatic?
plot_specgram(waveform1, sample_rate1, title="Original", xlim=(0, 3.04))
play_audio(waveform1, sample_rate1)
plot_specgram(waveform2, sample_rate2, title="Effects Applied", xlim=(0, 3.04))
play_audio(waveform2, sample_rate2)
Simulating room reverbration¶
Convolution reverb is a technique used to make a clean audio data sound like in a different environment.
Using Room Impulse Response (RIR), we can make a clean speech sound like uttered in a conference room.
For this process, we need RIR data. The following data are from VOiCES dataset, but you can record one by your self. Just turn on microphone and clap you hands.
sample_rate = 8000
rir_raw, _ = get_rir_sample(resample=sample_rate)
plot_waveform(rir_raw, sample_rate, title="Room Impulse Response (raw)", ylim=None)
plot_specgram(rir_raw, sample_rate, title="Room Impulse Response (raw)")
play_audio(rir_raw, sample_rate)
First, we need to clean up the RIR. We extract the main impulse, normalize the signal power, then flip the time axis.
rir = rir_raw[:, int(sample_rate*1.01):int(sample_rate*1.3)]
rir = rir / torch.norm(rir, p=2)
rir = torch.flip(rir, [1])
print_stats(rir)
plot_waveform(rir, sample_rate, title="Room Impulse Response", ylim=None)
Then we convolve the speech signal with the RIR filter.
speech, _ = get_speech_sample(resample=sample_rate)
speech_ = torch.nn.functional.pad(speech, (rir.shape[1]-1, 0))
augmented = torch.nn.functional.conv1d(speech_[None, ...], rir[None, ...])[0]
plot_waveform(speech, sample_rate, title="Original", ylim=None)
plot_waveform(augmented, sample_rate, title="RIR Applied", ylim=None)
plot_specgram(speech, sample_rate, title="Original")
play_audio(speech, sample_rate)
plot_specgram(augmented, sample_rate, title="RIR Applied")
play_audio(augmented, sample_rate)
Adding background noise¶
To add background noise to audio data, you can simply add audio Tensor and noise Tensor. A commonly way to adjust the intensity of noise is to change Signal-to-Noise Ratio (SNR). [wikipedia]
sample_rate = 8000
speech, _ = get_speech_sample(resample=sample_rate)
noise, _ = get_noise_sample(resample=sample_rate)
noise = noise[:, :speech.shape[1]]
plot_waveform(noise, sample_rate, title="Background noise")
plot_specgram(noise, sample_rate, title="Background noise")
play_audio(noise, sample_rate)
speech_power = speech.norm(p=2)
noise_power = noise.norm(p=2)
for snr_db in [20, 10, 3]:
snr = math.exp(snr_db / 10)
scale = snr * noise_power / speech_power
noisy_speech = (scale * speech + noise) / 2
plot_waveform(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
plot_specgram(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
play_audio(noisy_speech, sample_rate)
Applying codec to Tensor object¶
torchaudio.functional.apply_codec
can apply codecs to Tensor object.
Note This process is not differentiable.
waveform, sample_rate = get_speech_sample(resample=8000)
plot_specgram(waveform, sample_rate, title="Original")
play_audio(waveform, sample_rate)
configs = [
({"format": "wav", "encoding": 'ULAW', "bits_per_sample": 8}, "8 bit mu-law"),
({"format": "gsm"}, "GSM-FR"),
({"format": "mp3", "compression": -9}, "MP3"),
({"format": "vorbis", "compression": -1}, "Vorbis"),
]
for param, title in configs:
augmented = F.apply_codec(waveform, sample_rate, **param)
plot_specgram(augmented, sample_rate, title=title)
play_audio(augmented, sample_rate)
Simulating a phone recoding¶
Combining the previous techniques, we can simulate audio that sounds like a person talking over a phone in a echoey room with people talking in the background.
sample_rate = 16000
speech, _ = get_speech_sample(resample=sample_rate)
plot_specgram(speech, sample_rate, title="Original")
play_audio(speech, sample_rate)
# Apply RIR
rir, _ = get_rir_sample(resample=sample_rate, processed=True)
speech_ = torch.nn.functional.pad(speech, (rir.shape[1]-1, 0))
speech = torch.nn.functional.conv1d(speech_[None, ...], rir[None, ...])[0]
plot_specgram(speech, sample_rate, title="RIR Applied")
play_audio(speech, sample_rate)
# Add background noise
# Because the noise is recorded in the actual environment, we consider that
# the noise contains the acoustic feature of the environment. Therefore, we add
# the noise after RIR application.
noise, _ = get_noise_sample(resample=sample_rate)
noise = noise[:, :speech.shape[1]]
snr_db = 8
scale = math.exp(snr_db / 10) * noise.norm(p=2) / speech.norm(p=2)
speech = (scale * speech + noise) / 2
plot_specgram(speech, sample_rate, title="BG noise added")
play_audio(speech, sample_rate)
# Apply filtering and change sample rate
speech, sample_rate = torchaudio.sox_effects.apply_effects_tensor(
speech,
sample_rate,
effects=[
["lowpass", "4000"],
["compand", "0.02,0.05", "-60,-60,-30,-10,-20,-8,-5,-8,-2,-8", "-8", "-7", "0.05"],
["rate", "8000"],
],
)
plot_specgram(speech, sample_rate, title="Filtered")
play_audio(speech, sample_rate)
# Apply telephony codec
speech = F.apply_codec(speech, sample_rate, format="gsm")
plot_specgram(speech, sample_rate, title="GSM Codec Applied")
play_audio(speech, sample_rate)
Feature Extractions¶
torchaudio
implements feature extractions commonly used in audio
domain. They are available in torchaudio.functional
and
torchaudio.transforms
.
functional
module implements features as a stand alone functions.
They are stateless.
transforms
module implements features in object-oriented manner,
using implementations from functional
and torch.nn.Module
.
Because all the transforms are subclass of torch.nn.Module
, they can
be serialized using TorchScript.
For the complete list of available features, please refer to the
documentation. In this tutorial, we will look into conversion between
time domain and frequency domain (Spectrogram
, GriffinLim
,
MelSpectrogram
) and augmentation technique called SpecAugment.
Spectrogram¶
To get the frequency representation of audio signal, you can use
Spectrogram
transform.
waveform, sample_rate = get_speech_sample()
n_fft = 1024
win_length = None
hop_length = 512
# define transformation
spectrogram = T.Spectrogram(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=True,
pad_mode="reflect",
power=2.0,
)
# Perform transformation
spec = spectrogram(waveform)
print_stats(spec)
plot_spectrogram(spec[0], title='torchaudio')
GriffinLim¶
To recover a waveform from spectrogram, you can use GriffinLim
.
torch.random.manual_seed(0)
waveform, sample_rate = get_speech_sample()
plot_waveform(waveform, sample_rate, title="Original")
play_audio(waveform, sample_rate)
n_fft = 1024
win_length = None
hop_length = 512
spec = T.Spectrogram(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
)(waveform)
griffin_lim = T.GriffinLim(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
)
waveform = griffin_lim(spec)
plot_waveform(waveform, sample_rate, title="Reconstructed")
play_audio(waveform, sample_rate)
Mel Filter Bank¶
torchaudio.functional.create_fb_matrix
can generate the filter bank
to convert frequency bins to Mel-scale bins.
Since this function does not require input audio/features, there is no
equivalent transform in torchaudio.transforms
.
n_fft = 256
n_mels = 64
sample_rate = 6000
mel_filters = F.create_fb_matrix(
int(n_fft // 2 + 1),
n_mels=n_mels,
f_min=0.,
f_max=sample_rate/2.,
sample_rate=sample_rate,
norm='slaney'
)
plot_mel_fbank(mel_filters, "Mel Filter Bank - torchaudio")
Comparison against librosa¶
As a comparison, here is the equivalent way to get the mel filter bank
with librosa
.
Note Currently, the result matches only when htk=True
.
torchaudio
does not support the equivalent of htk=False
option.
mel_filters_librosa = librosa.filters.mel(
sample_rate,
n_fft,
n_mels=n_mels,
fmin=0.,
fmax=sample_rate/2.,
norm='slaney',
htk=True,
).T
plot_mel_fbank(mel_filters_librosa, "Mel Filter Bank - librosa")
mse = torch.square(mel_filters - mel_filters_librosa).mean().item()
print('Mean Square Difference: ', mse)
MelSpectrogram¶
Mel-scale spectrogram is a combination of Spectrogram and mel scale
conversion. In torchaudio
, there is a transform MelSpectrogram
which is composed of Spectrogram
and MelScale
.
waveform, sample_rate = get_speech_sample()
n_fft = 1024
win_length = None
hop_length = 512
n_mels = 128
mel_spectrogram = T.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=True,
pad_mode="reflect",
power=2.0,
norm='slaney',
onesided=True,
n_mels=n_mels,
)
melspec = mel_spectrogram(waveform)
plot_spectrogram(
melspec[0], title="MelSpectrogram - torchaudio", ylabel='mel freq')
Comparison against librosa¶
As a comparison, here is the equivalent way to get Mel-scale spectrogram
with librosa
.
Note Currently, the result matches only when htk=True
.
torchaudio
does not support the equivalent of htk=False
option.
melspec_librosa = librosa.feature.melspectrogram(
waveform.numpy()[0],
sr=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
center=True,
pad_mode="reflect",
power=2.0,
n_mels=n_mels,
norm='slaney',
htk=True,
)
plot_spectrogram(
melspec_librosa, title="MelSpectrogram - librosa", ylabel='mel freq')
mse = torch.square(melspec - melspec_librosa).mean().item()
print('Mean Square Difference: ', mse)
MFCC¶
waveform, sample_rate = get_speech_sample()
n_fft = 2048
win_length = None
hop_length = 512
n_mels = 256
n_mfcc = 256
mfcc_transform = T.MFCC(
sample_rate=sample_rate,
n_mfcc=n_mfcc, melkwargs={'n_fft': n_fft, 'n_mels': n_mels, 'hop_length': hop_length})
mfcc = mfcc_transform(waveform)
plot_spectrogram(mfcc[0])
Comparing against librosa¶
melspec = librosa.feature.melspectrogram(
y=waveform.numpy()[0], sr=sample_rate, n_fft=n_fft,
win_length=win_length, hop_length=hop_length,
n_mels=n_mels, htk=True, norm=None)
mfcc_librosa = librosa.feature.mfcc(
S=librosa.core.spectrum.power_to_db(melspec),
n_mfcc=n_mfcc, dct_type=2, norm='ortho')
plot_spectrogram(mfcc_librosa)
mse = torch.square(mfcc - mfcc_librosa).mean().item()
print('Mean Square Difference: ', mse)
Pitch¶
waveform, sample_rate = get_speech_sample()
pitch = F.detect_pitch_frequency(waveform, sample_rate)
plot_pitch(waveform, sample_rate, pitch)
play_audio(waveform, sample_rate)
Kaldi Pitch (beta)¶
Kaldi Pitch feature [1] is pitch detection mechanism tuned for ASR
application. This is a beta feature in torchaudio, and only
functional
form is available.
A pitch extraction algorithm tuned for automatic speech recognition
Ghahremani, B. BabaAli, D. Povey, K. Riedhammer, J. Trmal and S. Khudanpur
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, 2014, pp. 2494-2498, doi: 10.1109/ICASSP.2014.6854049. [abstract], [paper]
waveform, sample_rate = get_speech_sample(resample=16000)
pitch_feature = F.compute_kaldi_pitch(waveform, sample_rate)
pitch, nfcc = pitch_feature[..., 0], pitch_feature[..., 1]
plot_kaldi_pitch(waveform, sample_rate, pitch, nfcc)
play_audio(waveform, sample_rate)
Feature Augmentation¶
SpecAugment¶
SpecAugment is a popular augmentation technique applied on spectrogram.
torchaudio
implements TimeStrech
, TimeMasking
and
FrequencyMasking
.
TimeStrech¶
spec = get_spectrogram(power=None)
strech = T.TimeStretch()
rate = 1.2
spec_ = strech(spec, rate)
plot_spectrogram(F.complex_norm(spec_[0]), title=f"Stretched x{rate}", aspect='equal', xmax=304)
plot_spectrogram(F.complex_norm(spec[0]), title="Original", aspect='equal', xmax=304)
rate = 0.9
spec_ = strech(spec, rate)
plot_spectrogram(F.complex_norm(spec_[0]), title=f"Stretched x{rate}", aspect='equal', xmax=304)
TimeMasking¶
torch.random.manual_seed(4)
spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")
masking = T.TimeMasking(time_mask_param=80)
spec = masking(spec)
plot_spectrogram(spec[0], title="Masked along time axis")
FrequencyMasking¶
torch.random.manual_seed(4)
spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")
masking = T.FrequencyMasking(freq_mask_param=80)
spec = masking(spec)
plot_spectrogram(spec[0], title="Masked along frequency axis")
Datasets¶
torchaudio
provides easy access to common, publicly accessible
datasets. Please checkout the official documentation for the list of
available datasets.
Here, we take YESNO
dataset and look into how to use it.
YESNO_DOWNLOAD_PROCESS.join()
dataset = torchaudio.datasets.YESNO(YESNO_DATASET_PATH, download=True)
for i in [1, 3, 5]:
waveform, sample_rate, label = dataset[i]
plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}")
play_audio(waveform, sample_rate)
Total running time of the script: ( 0 minutes 0.000 seconds)