Shortcuts

Audio manipulation with torchaudio

torchaudio provides powerful audio I/O functions, preprocessing transforms and dataset.

In this tutorial, we will look into how to prepare audio data and extract features that can be fed to NN models.

# When running this tutorial in Google Colab, install the required packages
# with the following.
# !pip install torchaudio librosa boto3

import torch
import torchaudio
import torchaudio.functional as F
import torchaudio.transforms as T

print(torch.__version__)
print(torchaudio.__version__)

Preparing data and utility functions (skip this section)

#@title Prepare data and utility functions. {display-mode: "form"}
#@markdown
#@markdown You do not need to look into this cell.
#@markdown Just execute once and you are good to go.
#@markdown
#@markdown In this tutorial, we will use a speech data from [VOiCES dataset](https://iqtlabs.github.io/voices/), which is licensed under Creative Commos BY 4.0.

#-------------------------------------------------------------------------------
# Preparation of data and helper functions.
#-------------------------------------------------------------------------------
import io
import os
import math
import tarfile
import multiprocessing

import scipy
import librosa
import boto3
from botocore import UNSIGNED
from botocore.config import Config
import requests
import matplotlib
import matplotlib.pyplot as plt
from IPython.display import Audio, display

[width, height] = matplotlib.rcParams['figure.figsize']
if width < 10:
  matplotlib.rcParams['figure.figsize'] = [width * 2.5, height]

_SAMPLE_DIR = "_sample_data"
SAMPLE_WAV_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/steam-train-whistle-daniel_simon.wav"
SAMPLE_WAV_PATH = os.path.join(_SAMPLE_DIR, "steam.wav")

SAMPLE_WAV_SPEECH_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"
SAMPLE_WAV_SPEECH_PATH = os.path.join(_SAMPLE_DIR, "speech.wav")

SAMPLE_RIR_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/distant-16k/room-response/rm1/impulse/Lab41-SRI-VOiCES-rm1-impulse-mc01-stu-clo.wav"
SAMPLE_RIR_PATH = os.path.join(_SAMPLE_DIR, "rir.wav")

SAMPLE_NOISE_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/distant-16k/distractors/rm1/babb/Lab41-SRI-VOiCES-rm1-babb-mc01-stu-clo.wav"
SAMPLE_NOISE_PATH = os.path.join(_SAMPLE_DIR, "bg.wav")

SAMPLE_MP3_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/steam-train-whistle-daniel_simon.mp3"
SAMPLE_MP3_PATH = os.path.join(_SAMPLE_DIR, "steam.mp3")

SAMPLE_GSM_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/steam-train-whistle-daniel_simon.gsm"
SAMPLE_GSM_PATH = os.path.join(_SAMPLE_DIR, "steam.gsm")

SAMPLE_TAR_URL = "https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit.tar.gz"
SAMPLE_TAR_PATH = os.path.join(_SAMPLE_DIR, "sample.tar.gz")
SAMPLE_TAR_ITEM = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"

S3_BUCKET = "pytorch-tutorial-assets"
S3_KEY = "VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav"

YESNO_DATASET_PATH = os.path.join(_SAMPLE_DIR, "yes_no")
os.makedirs(YESNO_DATASET_PATH, exist_ok=True)
os.makedirs(_SAMPLE_DIR, exist_ok=True)

def _fetch_data():
  uri = [
    (SAMPLE_WAV_URL, SAMPLE_WAV_PATH),
    (SAMPLE_WAV_SPEECH_URL, SAMPLE_WAV_SPEECH_PATH),
    (SAMPLE_RIR_URL, SAMPLE_RIR_PATH),
    (SAMPLE_NOISE_URL, SAMPLE_NOISE_PATH),
    (SAMPLE_MP3_URL, SAMPLE_MP3_PATH),
    (SAMPLE_GSM_URL, SAMPLE_GSM_PATH),
    (SAMPLE_TAR_URL, SAMPLE_TAR_PATH),
  ]
  for url, path in uri:
    with open(path, 'wb') as file_:
      file_.write(requests.get(url).content)

_fetch_data()

def _download_yesno():
  if os.path.exists(os.path.join(YESNO_DATASET_PATH, "waves_yesno.tar.gz")):
    return
  torchaudio.datasets.YESNO(root=YESNO_DATASET_PATH, download=True)

YESNO_DOWNLOAD_PROCESS = multiprocessing.Process(target=_download_yesno)
YESNO_DOWNLOAD_PROCESS.start()

def _get_sample(path, resample=None):
  effects = [
    ["remix", "1"]
  ]
  if resample:
    effects.append(["rate", f'{resample}'])
  return torchaudio.sox_effects.apply_effects_file(path, effects=effects)

def get_speech_sample(*, resample=None):
  return _get_sample(SAMPLE_WAV_SPEECH_PATH, resample=resample)

def get_sample(*, resample=None):
  return _get_sample(SAMPLE_WAV_PATH, resample=resample)

def get_rir_sample(*, resample=None, processed=False):
  rir_raw, sample_rate = _get_sample(SAMPLE_RIR_PATH, resample=resample)
  if not processed:
    return rir_raw, sample_rate
  rir = rir_raw[:, int(sample_rate*1.01):int(sample_rate*1.3)]
  rir = rir / torch.norm(rir, p=2)
  rir = torch.flip(rir, [1])
  return rir, sample_rate

def get_noise_sample(*, resample=None):
  return _get_sample(SAMPLE_NOISE_PATH, resample=resample)

def print_metadata(metadata, src=None):
  if src:
    print("-" * 10)
    print("Source:", src)
    print("-" * 10)
  print(" - sample_rate:", metadata.sample_rate)
  print(" - num_channels:", metadata.num_channels)
  print(" - num_frames:", metadata.num_frames)
  print(" - bits_per_sample:", metadata.bits_per_sample)
  print(" - encoding:", metadata.encoding)
  print()

def print_stats(waveform, sample_rate=None, src=None):
  if src:
    print("-" * 10)
    print("Source:", src)
    print("-" * 10)
  if sample_rate:
    print("Sample Rate:", sample_rate)
  print("Shape:", tuple(waveform.shape))
  print("Dtype:", waveform.dtype)
  print(f" - Max:     {waveform.max().item():6.3f}")
  print(f" - Min:     {waveform.min().item():6.3f}")
  print(f" - Mean:    {waveform.mean().item():6.3f}")
  print(f" - Std Dev: {waveform.std().item():6.3f}")
  print()
  print(waveform)
  print()

def plot_waveform(waveform, sample_rate, title="Waveform", xlim=None, ylim=None):
  waveform = waveform.numpy()

  num_channels, num_frames = waveform.shape
  time_axis = torch.arange(0, num_frames) / sample_rate

  figure, axes = plt.subplots(num_channels, 1)
  if num_channels == 1:
    axes = [axes]
  for c in range(num_channels):
    axes[c].plot(time_axis, waveform[c], linewidth=1)
    axes[c].grid(True)
    if num_channels > 1:
      axes[c].set_ylabel(f'Channel {c+1}')
    if xlim:
      axes[c].set_xlim(xlim)
    if ylim:
      axes[c].set_ylim(ylim)
  figure.suptitle(title)
  plt.show(block=False)

def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None):
  waveform = waveform.numpy()

  num_channels, num_frames = waveform.shape
  time_axis = torch.arange(0, num_frames) / sample_rate

  figure, axes = plt.subplots(num_channels, 1)
  if num_channels == 1:
    axes = [axes]
  for c in range(num_channels):
    axes[c].specgram(waveform[c], Fs=sample_rate)
    if num_channels > 1:
      axes[c].set_ylabel(f'Channel {c+1}')
    if xlim:
      axes[c].set_xlim(xlim)
  figure.suptitle(title)
  plt.show(block=False)

def play_audio(waveform, sample_rate):
  waveform = waveform.numpy()

  num_channels, num_frames = waveform.shape
  if num_channels == 1:
    display(Audio(waveform[0], rate=sample_rate))
  elif num_channels == 2:
    display(Audio((waveform[0], waveform[1]), rate=sample_rate))
  else:
    raise ValueError("Waveform with more than 2 channels are not supported.")

def inspect_file(path):
  print("-" * 10)
  print("Source:", path)
  print("-" * 10)
  print(f" - File size: {os.path.getsize(path)} bytes")
  print_metadata(torchaudio.info(path))

def plot_spectrogram(spec, title=None, ylabel='freq_bin', aspect='auto', xmax=None):
  fig, axs = plt.subplots(1, 1)
  axs.set_title(title or 'Spectrogram (db)')
  axs.set_ylabel(ylabel)
  axs.set_xlabel('frame')
  im = axs.imshow(librosa.power_to_db(spec), origin='lower', aspect=aspect)
  if xmax:
    axs.set_xlim((0, xmax))
  fig.colorbar(im, ax=axs)
  plt.show(block=False)

def plot_mel_fbank(fbank, title=None):
  fig, axs = plt.subplots(1, 1)
  axs.set_title(title or 'Filter bank')
  axs.imshow(fbank, aspect='auto')
  axs.set_ylabel('frequency bin')
  axs.set_xlabel('mel bin')
  plt.show(block=False)

def get_spectrogram(
    n_fft = 400,
    win_len = None,
    hop_len = None,
    power = 2.0,
):
  waveform, _ = get_speech_sample()
  spectrogram = T.Spectrogram(
      n_fft=n_fft,
      win_length=win_len,
      hop_length=hop_len,
      center=True,
      pad_mode="reflect",
      power=power,
  )
  return spectrogram(waveform)

def plot_pitch(waveform, sample_rate, pitch):
  figure, axis = plt.subplots(1, 1)
  axis.set_title("Pitch Feature")
  axis.grid(True)

  end_time = waveform.shape[1] / sample_rate
  time_axis = torch.linspace(0, end_time,  waveform.shape[1])
  axis.plot(time_axis, waveform[0], linewidth=1, color='gray', alpha=0.3)

  axis2 = axis.twinx()
  time_axis = torch.linspace(0, end_time, pitch.shape[1])
  ln2 = axis2.plot(
      time_axis, pitch[0], linewidth=2, label='Pitch', color='green')

  axis2.legend(loc=0)
  plt.show(block=False)

def plot_kaldi_pitch(waveform, sample_rate, pitch, nfcc):
  figure, axis = plt.subplots(1, 1)
  axis.set_title("Kaldi Pitch Feature")
  axis.grid(True)

  end_time = waveform.shape[1] / sample_rate
  time_axis = torch.linspace(0, end_time,  waveform.shape[1])
  axis.plot(time_axis, waveform[0], linewidth=1, color='gray', alpha=0.3)

  time_axis = torch.linspace(0, end_time, pitch.shape[1])
  ln1 = axis.plot(time_axis, pitch[0], linewidth=2, label='Pitch', color='green')
  axis.set_ylim((-1.3, 1.3))

  axis2 = axis.twinx()
  time_axis = torch.linspace(0, end_time, nfcc.shape[1])
  ln2 = axis2.plot(
      time_axis, nfcc[0], linewidth=2, label='NFCC', color='blue', linestyle='--')

  lns = ln1 + ln2
  labels = [l.get_label() for l in lns]
  axis.legend(lns, labels, loc=0)
  plt.show(block=False)

Audio I/O

torchaudio integrates libsox and provides a rich set of audio I/O.

Quering audio metadata

torchaudio.info function fetches metadata of audio. You can provide a path-like object or file-like object.

metadata = torchaudio.info(SAMPLE_WAV_PATH)
print_metadata(metadata, src=SAMPLE_WAV_PATH)

Where

  • sample_rate is the sampling rate of the audio
  • num_channels is the number of channels
  • num_frames is the number of frames per channel
  • bits_per_sample is bit depth
  • encoding is the sample coding format

The values encoding can take are one of the following

Note

  • bits_per_sample can be 0 for formats with compression and/or variable bit rate. (such as mp3)
  • num_frames can be 0 for GSM-FR format.
metadata = torchaudio.info(SAMPLE_MP3_PATH)
print_metadata(metadata, src=SAMPLE_MP3_PATH)

metadata = torchaudio.info(SAMPLE_GSM_PATH)
print_metadata(metadata, src=SAMPLE_GSM_PATH)

Querying file-like object

info function works on file-like object as well.

with requests.get(SAMPLE_WAV_URL, stream=True) as response:
  metadata = torchaudio.info(response.raw)
print_metadata(metadata, src=SAMPLE_WAV_URL)

Note When passing file-like object, info function does not read all the data, instead it only reads the beginning portion of data. Therefore, depending on the audio format, it cannot get the correct metadata, including the format itself. The following example illustrates this.

  • Use format argument to tell what audio format it is.
  • The returned metadata has num_frames = 0
with requests.get(SAMPLE_MP3_URL, stream=True) as response:
  metadata = torchaudio.info(response.raw, format="mp3")

  print(f"Fetched {response.raw.tell()} bytes.")
print_metadata(metadata, src=SAMPLE_MP3_URL)

Loading audio data into Tensor

To load audio data, you can use torchaudio.load.

This function accepts path-like object and file-like object.

The returned value is a tuple of waveform (Tensor) and sample rate (int).

By default, the resulting tensor object has dtype=torch.float32 and its value range is normalized within [-1.0, 1.0].

For the list of supported format, please refer to the torchaudio documentation.

waveform, sample_rate = torchaudio.load(SAMPLE_WAV_SPEECH_PATH)

print_stats(waveform, sample_rate=sample_rate)
plot_waveform(waveform, sample_rate)
plot_specgram(waveform, sample_rate)
play_audio(waveform, sample_rate)

Loading from file-like object

torchaudio’s I/O functions now support file-like object. This allows to fetch audio data and decode at the same time from the location other than local file system. The following examples illustrates this.

# Load audio data as HTTP request
with requests.get(SAMPLE_WAV_SPEECH_URL, stream=True) as response:
  waveform, sample_rate = torchaudio.load(response.raw)
plot_specgram(waveform, sample_rate, title="HTTP datasource")

# Load audio from tar file
with tarfile.open(SAMPLE_TAR_PATH, mode='r') as tarfile_:
  fileobj = tarfile_.extractfile(SAMPLE_TAR_ITEM)
  waveform, sample_rate = torchaudio.load(fileobj)
plot_specgram(waveform, sample_rate, title="TAR file")

# Load audio from S3
client = boto3.client('s3', config=Config(signature_version=UNSIGNED))
response = client.get_object(Bucket=S3_BUCKET, Key=S3_KEY)
waveform, sample_rate = torchaudio.load(response['Body'])
plot_specgram(waveform, sample_rate, title="From S3")

Tips on slicing

Providing num_frames and frame_offset arguments will slice the resulting Tensor object while decoding.

The same result can be achieved using the regular Tensor slicing, (i.e. waveform[:, frame_offset:frame_offset+num_frames]) however, providing num_frames and frame_offset arguments is more efficient.

This is because the function will stop data acquisition and decoding once it finishes decoding the requested frames. This is advantageous when the audio data are transfered via network as the data transfer will stop as soon as the necessary amount of data is fetched.

The following example illustrates this;

# Illustration of two different decoding methods.
# The first one will fetch all the data and decode them, while
# the second one will stop fetching data once it completes decoding.
# The resulting waveforms are identical.

frame_offset, num_frames = 16000, 16000  # Fetch and decode the 1 - 2 seconds

print("Fetching all the data...")
with requests.get(SAMPLE_WAV_SPEECH_URL, stream=True) as response:
  waveform1, sample_rate1 = torchaudio.load(response.raw)
  waveform1 = waveform1[:, frame_offset:frame_offset+num_frames]
  print(f" - Fetched {response.raw.tell()} bytes")

print("Fetching until the requested frames are available...")
with requests.get(SAMPLE_WAV_SPEECH_URL, stream=True) as response:
  waveform2, sample_rate2 = torchaudio.load(
      response.raw, frame_offset=frame_offset, num_frames=num_frames)
  print(f" - Fetched {response.raw.tell()} bytes")

print("Checking the resulting waveform ... ", end="")
assert (waveform1 == waveform2).all()
print("matched!")

Saving audio to file

To save audio data in the formats intepretable by common applications, you can use torchaudio.save.

This function accepts path-like object and file-like object.

When passing file-like object, you also need to provide format argument so that the function knows which format it should be using. In case of path-like object, the function will detemine the format based on the extension. If you are saving to a file without extension, you need to provide format argument.

When saving as WAV format, the default encoding for float32 Tensor is 32-bit floating-point PCM. You can provide encoding and bits_per_sample argument to change this. For example, to save data in 16 bit signed integer PCM, you can do the following.

Note Saving data in encodings with lower bit depth reduces the resulting file size but loses precision.

waveform, sample_rate = get_sample()
print_stats(waveform, sample_rate=sample_rate)

# Save without any encoding option.
# The function will pick up the encoding which
# the provided data fit
path = "save_example_default.wav"
torchaudio.save(path, waveform, sample_rate)
inspect_file(path)

# Save as 16-bit signed integer Linear PCM
# The resulting file occupies half the storage but loses precision
path = "save_example_PCM_S16.wav"
torchaudio.save(
    path, waveform, sample_rate,
    encoding="PCM_S", bits_per_sample=16)
inspect_file(path)

torchaudio.save can also handle other formats. To name a few;

waveform, sample_rate = get_sample()

formats = [
  "mp3",
  "flac",
  "vorbis",
  "sph",
  "amb",
  "amr-nb",
  "gsm",
]

for format in formats:
  path = f"save_example.{format}"
  torchaudio.save(path, waveform, sample_rate, format=format)
  inspect_file(path)

Saving to file-like object

Similar to the other I/O functions, you can save audio into file-like object. When saving to file-like object, format argument is required.

waveform, sample_rate = get_sample()

# Saving to Bytes buffer
buffer_ = io.BytesIO()
torchaudio.save(buffer_, waveform, sample_rate, format="wav")

buffer_.seek(0)
print(buffer_.read(16))

Data Augmentation

torchaudio provides a variety of ways to augment audio data.

Applying effects and filtering

torchaudio.sox_effects module provides ways to apply filiters like sox command on Tensor objects and file-object audio sources directly.

There are two functions for this;

  • torchaudio.sox_effects.apply_effects_tensor for applying effects on Tensor
  • torchaudio.sox_effects.apply_effects_file for applying effects on other audio source

Both function takes effects in the form of List[List[str]]. This mostly corresponds to how sox command works, but one caveat is that sox command adds some effects automatically, but torchaudio’s implementation does not do that.

For the list of available effects, please refer to the sox documentation.

Tip If you need to load and resample your audio data on-the-fly, then you can use torchaudio.sox_effects.apply_effects_file with "rate" effect.

Note apply_effects_file accepts file-like object or path-like object. Similar to torchaudio.load, when the audio format cannot be detected from either file extension or header, you can provide format argument to tell what format the audio source is.

Note This process is not differentiable.

# Load the data
waveform1, sample_rate1 = get_sample(resample=16000)

# Define effects
effects = [
  ["lowpass", "-1", "300"], # apply single-pole lowpass filter
  ["speed", "0.8"],  # reduce the speed
                     # This only changes sample rate, so it is necessary to
                     # add `rate` effect with original sample rate after this.
  ["rate", f"{sample_rate1}"],
  ["reverb", "-w"],  # Reverbration gives some dramatic feeling
]

# Apply effects
waveform2, sample_rate2 = torchaudio.sox_effects.apply_effects_tensor(
    waveform1, sample_rate1, effects)

plot_waveform(waveform1, sample_rate1, title="Original", xlim=(-.1, 3.2))
plot_waveform(waveform2, sample_rate2, title="Effects Applied", xlim=(-.1, 3.2))
print_stats(waveform1, sample_rate=sample_rate1, src="Original")
print_stats(waveform2, sample_rate=sample_rate2, src="Effects Applied")

Note that the number of frames and number of channels are different from the original after the effects. Let’s listen to the audio. Doesn’t it sound more dramatic?

plot_specgram(waveform1, sample_rate1, title="Original", xlim=(0, 3.04))
play_audio(waveform1, sample_rate1)
plot_specgram(waveform2, sample_rate2, title="Effects Applied", xlim=(0, 3.04))
play_audio(waveform2, sample_rate2)

Simulating room reverbration

Convolution reverb is a technique used to make a clean audio data sound like in a different environment.

Using Room Impulse Response (RIR), we can make a clean speech sound like uttered in a conference room.

For this process, we need RIR data. The following data are from VOiCES dataset, but you can record one by your self. Just turn on microphone and clap you hands.

sample_rate = 8000

rir_raw, _ = get_rir_sample(resample=sample_rate)

plot_waveform(rir_raw, sample_rate, title="Room Impulse Response (raw)", ylim=None)
plot_specgram(rir_raw, sample_rate, title="Room Impulse Response (raw)")
play_audio(rir_raw, sample_rate)

First, we need to clean up the RIR. We extract the main impulse, normalize the signal power, then flip the time axis.

rir = rir_raw[:, int(sample_rate*1.01):int(sample_rate*1.3)]
rir = rir / torch.norm(rir, p=2)
rir = torch.flip(rir, [1])

print_stats(rir)
plot_waveform(rir, sample_rate, title="Room Impulse Response", ylim=None)

Then we convolve the speech signal with the RIR filter.

speech, _ = get_speech_sample(resample=sample_rate)

speech_ = torch.nn.functional.pad(speech, (rir.shape[1]-1, 0))
augmented = torch.nn.functional.conv1d(speech_[None, ...], rir[None, ...])[0]

plot_waveform(speech, sample_rate, title="Original", ylim=None)
plot_waveform(augmented, sample_rate, title="RIR Applied", ylim=None)

plot_specgram(speech, sample_rate, title="Original")
play_audio(speech, sample_rate)

plot_specgram(augmented, sample_rate, title="RIR Applied")
play_audio(augmented, sample_rate)

Adding background noise

To add background noise to audio data, you can simply add audio Tensor and noise Tensor. A commonly way to adjust the intensity of noise is to change Signal-to-Noise Ratio (SNR). [wikipedia]

\[\mathrm{SNR} = \frac{P_\mathrm{signal}}{P_\mathrm{noise}}\]
\[{\mathrm {SNR_{{dB}}}}=10\log _{{10}}\left({\mathrm {SNR}}\right)\]
sample_rate = 8000
speech, _ = get_speech_sample(resample=sample_rate)
noise, _ = get_noise_sample(resample=sample_rate)
noise = noise[:, :speech.shape[1]]

plot_waveform(noise, sample_rate, title="Background noise")
plot_specgram(noise, sample_rate, title="Background noise")
play_audio(noise, sample_rate)

speech_power = speech.norm(p=2)
noise_power = noise.norm(p=2)

for snr_db in [20, 10, 3]:
  snr = math.exp(snr_db / 10)
  scale = snr * noise_power / speech_power
  noisy_speech = (scale * speech + noise) / 2

  plot_waveform(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
  plot_specgram(noisy_speech, sample_rate, title=f"SNR: {snr_db} [dB]")
  play_audio(noisy_speech, sample_rate)

Applying codec to Tensor object

torchaudio.functional.apply_codec can apply codecs to Tensor object.

Note This process is not differentiable.

waveform, sample_rate = get_speech_sample(resample=8000)

plot_specgram(waveform, sample_rate, title="Original")
play_audio(waveform, sample_rate)

configs = [
    ({"format": "wav", "encoding": 'ULAW', "bits_per_sample": 8}, "8 bit mu-law"),
    ({"format": "gsm"}, "GSM-FR"),
    ({"format": "mp3", "compression": -9}, "MP3"),
    ({"format": "vorbis", "compression": -1}, "Vorbis"),
]
for param, title in configs:
  augmented = F.apply_codec(waveform, sample_rate, **param)
  plot_specgram(augmented, sample_rate, title=title)
  play_audio(augmented, sample_rate)

Simulating a phone recoding

Combining the previous techniques, we can simulate audio that sounds like a person talking over a phone in a echoey room with people talking in the background.

sample_rate = 16000
speech, _ = get_speech_sample(resample=sample_rate)

plot_specgram(speech, sample_rate, title="Original")
play_audio(speech, sample_rate)

# Apply RIR
rir, _ = get_rir_sample(resample=sample_rate, processed=True)
speech_ = torch.nn.functional.pad(speech, (rir.shape[1]-1, 0))
speech = torch.nn.functional.conv1d(speech_[None, ...], rir[None, ...])[0]

plot_specgram(speech, sample_rate, title="RIR Applied")
play_audio(speech, sample_rate)

# Add background noise
# Because the noise is recorded in the actual environment, we consider that
# the noise contains the acoustic feature of the environment. Therefore, we add
# the noise after RIR application.
noise, _ = get_noise_sample(resample=sample_rate)
noise = noise[:, :speech.shape[1]]

snr_db = 8
scale = math.exp(snr_db / 10) * noise.norm(p=2) / speech.norm(p=2)
speech = (scale * speech + noise) / 2

plot_specgram(speech, sample_rate, title="BG noise added")
play_audio(speech, sample_rate)

# Apply filtering and change sample rate
speech, sample_rate = torchaudio.sox_effects.apply_effects_tensor(
  speech,
  sample_rate,
  effects=[
      ["lowpass", "4000"],
      ["compand", "0.02,0.05", "-60,-60,-30,-10,-20,-8,-5,-8,-2,-8", "-8", "-7", "0.05"],
      ["rate", "8000"],
  ],
)

plot_specgram(speech, sample_rate, title="Filtered")
play_audio(speech, sample_rate)

# Apply telephony codec
speech = F.apply_codec(speech, sample_rate, format="gsm")

plot_specgram(speech, sample_rate, title="GSM Codec Applied")
play_audio(speech, sample_rate)

Feature Extractions

torchaudio implements feature extractions commonly used in audio domain. They are available in torchaudio.functional and torchaudio.transforms.

functional module implements features as a stand alone functions. They are stateless.

transforms module implements features in object-oriented manner, using implementations from functional and torch.nn.Module.

Because all the transforms are subclass of torch.nn.Module, they can be serialized using TorchScript.

For the complete list of available features, please refer to the documentation. In this tutorial, we will look into conversion between time domain and frequency domain (Spectrogram, GriffinLim, MelSpectrogram) and augmentation technique called SpecAugment.

Spectrogram

To get the frequency representation of audio signal, you can use Spectrogram transform.

waveform, sample_rate = get_speech_sample()

n_fft = 1024
win_length = None
hop_length = 512

# define transformation
spectrogram = T.Spectrogram(
    n_fft=n_fft,
    win_length=win_length,
    hop_length=hop_length,
    center=True,
    pad_mode="reflect",
    power=2.0,
)
# Perform transformation
spec = spectrogram(waveform)

print_stats(spec)
plot_spectrogram(spec[0], title='torchaudio')

GriffinLim

To recover a waveform from spectrogram, you can use GriffinLim.

torch.random.manual_seed(0)
waveform, sample_rate = get_speech_sample()
plot_waveform(waveform, sample_rate, title="Original")
play_audio(waveform, sample_rate)

n_fft = 1024
win_length = None
hop_length = 512

spec = T.Spectrogram(
    n_fft=n_fft,
    win_length=win_length,
    hop_length=hop_length,
)(waveform)

griffin_lim = T.GriffinLim(
    n_fft=n_fft,
    win_length=win_length,
    hop_length=hop_length,
)
waveform = griffin_lim(spec)

plot_waveform(waveform, sample_rate, title="Reconstructed")
play_audio(waveform, sample_rate)

Mel Filter Bank

torchaudio.functional.create_fb_matrix can generate the filter bank to convert frequency bins to Mel-scale bins.

Since this function does not require input audio/features, there is no equivalent transform in torchaudio.transforms.

n_fft = 256
n_mels = 64
sample_rate = 6000

mel_filters = F.create_fb_matrix(
    int(n_fft // 2 + 1),
    n_mels=n_mels,
    f_min=0.,
    f_max=sample_rate/2.,
    sample_rate=sample_rate,
    norm='slaney'
)
plot_mel_fbank(mel_filters, "Mel Filter Bank - torchaudio")

Comparison against librosa

As a comparison, here is the equivalent way to get the mel filter bank with librosa.

Note Currently, the result matches only when htk=True. torchaudio does not support the equivalent of htk=False option.

mel_filters_librosa = librosa.filters.mel(
    sample_rate,
    n_fft,
    n_mels=n_mels,
    fmin=0.,
    fmax=sample_rate/2.,
    norm='slaney',
    htk=True,
).T

plot_mel_fbank(mel_filters_librosa, "Mel Filter Bank - librosa")

mse = torch.square(mel_filters - mel_filters_librosa).mean().item()
print('Mean Square Difference: ', mse)

MelSpectrogram

Mel-scale spectrogram is a combination of Spectrogram and mel scale conversion. In torchaudio, there is a transform MelSpectrogram which is composed of Spectrogram and MelScale.

waveform, sample_rate = get_speech_sample()

n_fft = 1024
win_length = None
hop_length = 512
n_mels = 128

mel_spectrogram = T.MelSpectrogram(
    sample_rate=sample_rate,
    n_fft=n_fft,
    win_length=win_length,
    hop_length=hop_length,
    center=True,
    pad_mode="reflect",
    power=2.0,
    norm='slaney',
    onesided=True,
    n_mels=n_mels,
)

melspec = mel_spectrogram(waveform)
plot_spectrogram(
    melspec[0], title="MelSpectrogram - torchaudio", ylabel='mel freq')

Comparison against librosa

As a comparison, here is the equivalent way to get Mel-scale spectrogram with librosa.

Note Currently, the result matches only when htk=True. torchaudio does not support the equivalent of htk=False option.

melspec_librosa = librosa.feature.melspectrogram(
    waveform.numpy()[0],
    sr=sample_rate,
    n_fft=n_fft,
    hop_length=hop_length,
    win_length=win_length,
    center=True,
    pad_mode="reflect",
    power=2.0,
    n_mels=n_mels,
    norm='slaney',
    htk=True,
)
plot_spectrogram(
    melspec_librosa, title="MelSpectrogram - librosa", ylabel='mel freq')

mse = torch.square(melspec - melspec_librosa).mean().item()
print('Mean Square Difference: ', mse)

MFCC

waveform, sample_rate = get_speech_sample()

n_fft = 2048
win_length = None
hop_length = 512
n_mels = 256
n_mfcc = 256

mfcc_transform = T.MFCC(
    sample_rate=sample_rate,
    n_mfcc=n_mfcc, melkwargs={'n_fft': n_fft, 'n_mels': n_mels, 'hop_length': hop_length})

mfcc = mfcc_transform(waveform)

plot_spectrogram(mfcc[0])

Comparing against librosa

melspec = librosa.feature.melspectrogram(
  y=waveform.numpy()[0], sr=sample_rate, n_fft=n_fft,
  win_length=win_length, hop_length=hop_length,
  n_mels=n_mels, htk=True, norm=None)

mfcc_librosa = librosa.feature.mfcc(
  S=librosa.core.spectrum.power_to_db(melspec),
  n_mfcc=n_mfcc, dct_type=2, norm='ortho')

plot_spectrogram(mfcc_librosa)

mse = torch.square(mfcc - mfcc_librosa).mean().item()
print('Mean Square Difference: ', mse)

Pitch

waveform, sample_rate = get_speech_sample()

pitch = F.detect_pitch_frequency(waveform, sample_rate)
plot_pitch(waveform, sample_rate, pitch)
play_audio(waveform, sample_rate)

Kaldi Pitch (beta)

Kaldi Pitch feature [1] is pitch detection mechanism tuned for ASR application. This is a beta feature in torchaudio, and only functional form is available.

  1. A pitch extraction algorithm tuned for automatic speech recognition

    Ghahremani, B. BabaAli, D. Povey, K. Riedhammer, J. Trmal and S. Khudanpur

    2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, 2014, pp. 2494-2498, doi: 10.1109/ICASSP.2014.6854049. [abstract], [paper]

waveform, sample_rate = get_speech_sample(resample=16000)

pitch_feature = F.compute_kaldi_pitch(waveform, sample_rate)
pitch, nfcc = pitch_feature[..., 0], pitch_feature[..., 1]

plot_kaldi_pitch(waveform, sample_rate, pitch, nfcc)
play_audio(waveform, sample_rate)

Feature Augmentation

SpecAugment

SpecAugment is a popular augmentation technique applied on spectrogram.

torchaudio implements TimeStrech, TimeMasking and FrequencyMasking.

TimeStrech

spec = get_spectrogram(power=None)
strech = T.TimeStretch()

rate = 1.2
spec_ = strech(spec, rate)
plot_spectrogram(F.complex_norm(spec_[0]), title=f"Stretched x{rate}", aspect='equal', xmax=304)

plot_spectrogram(F.complex_norm(spec[0]), title="Original", aspect='equal', xmax=304)

rate = 0.9
spec_ = strech(spec, rate)
plot_spectrogram(F.complex_norm(spec_[0]), title=f"Stretched x{rate}", aspect='equal', xmax=304)

TimeMasking

torch.random.manual_seed(4)

spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")

masking = T.TimeMasking(time_mask_param=80)
spec = masking(spec)

plot_spectrogram(spec[0], title="Masked along time axis")

FrequencyMasking

torch.random.manual_seed(4)

spec = get_spectrogram()
plot_spectrogram(spec[0], title="Original")

masking = T.FrequencyMasking(freq_mask_param=80)
spec = masking(spec)

plot_spectrogram(spec[0], title="Masked along frequency axis")

Datasets

torchaudio provides easy access to common, publicly accessible datasets. Please checkout the official documentation for the list of available datasets.

Here, we take YESNO dataset and look into how to use it.

YESNO_DOWNLOAD_PROCESS.join()

dataset = torchaudio.datasets.YESNO(YESNO_DATASET_PATH, download=True)

for i in [1, 3, 5]:
  waveform, sample_rate, label = dataset[i]
  plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}")
  play_audio(waveform, sample_rate)

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources